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• UAV and satellite data reveal cooling 
effects of pale lichens on Arctic land 
temperatures.

• Increased lichen biomass reduces land 
surface temperature, especially at the 
landscape scale.

• UAV models accurately predict fine- 
scale lichen biomass and vascular vege
tation cover.

• Combining UAV and satellite data im
proves ecosystem monitoring at multi
ple spatial scales.
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A B S T R A C T

Pale terricolous lichens are a vital component of Arctic ecosystems, significantly contributing to carbon balance, 
energy regulation, and serving as a primary food source for reindeer. Their characteristically high albedo also 
impacts land surface temperature (LST) dynamics across various spatial scales. However, remote sensing of li
chens is challenging due to their complex spectral signatures and large spatial variations in coverage and biomass 
even within local landscape scales. This study evaluates the influence of pale lichens on LST at local and land
scape scales by integrating RGB, multispectral, and thermal infrared imagery from an Unmanned Aerial Vehicle 
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(UAV) with multi-temporal Landsat 8 thermal data. An Extreme Gradient Boosting algorithm was employed to 
map pale lichen biomass, areal extent, and the occurrence of major plant functional types in the sub-arctic heath 
tundra landscape in the Jávrrešduottar and Sieiddečearru areas on the Finland-Norway border. Generalized 
Additive Models (GAMs) were used to elucidate the factors affecting LST. The UAV model accurately predicted 
pale lichen biomass (R2 0.63) and vascular vegetation cover (R2 0.70). GAMs revealed that pale lichens signif
icantly influence thermal regimes, with increased biomass leading to decreased LST, an effect more pronounced 
at the landscape scale (deviance explained 47.26 % and 65.8 % for local and landscape models, respectively). 
Pale lichen biomass was identified as the second most important variable affecting LST at both scales, with 
elevation being the most important variable. This research demonstrates the capability of UAV-derived models to 
capture the heterogeneous and fine-scale structure of tundra ecosystems. Furthermore, it underscores the 
effectiveness of combining high spatial resolution UAV and high temporal resolution satellite platforms. Finally, 
this study highlights the pivotal role of pale lichens in Arctic thermal dynamics and showcases how advanced 
remote sensing techniques can be used for ecological monitoring and management.

1. Introduction

Lichens cover around 8 % of the Earth’s land surface (Crittenden, 
2000; Elbert et al., 2012). While possessing the ability to colonize almost 
all terrestrial habitats, they play a key role in various ecosystem func
tions particularly at high altitudes and latitudes (Asplund and Wardle, 
2017). Driven by morphological and biochemical adaptations (Sonesson 
and Callaghan, 1991; Cornelissen et al., 2007), lichens exhibit a high 
tolerance to cold temperatures and drought (Pannewitz et al., 2003; 
Bjerke et al., 2011), which allows them to act as pioneers and establish 
and grow in habitats with extreme conditions (Armstrong, 2017).

While lichens can vary in color, pale lichens are believed to play an 
important role in regulating energy and carbon balance in high-latitude 
ecosystems (Bjerke et al., 2024), since they control soil temperature 
regimes through the reflection of shortwave radiation (Soudzilovskaia 
et al., 2013; Aartsma et al., 2020). Pale fruticose ground lichens are 
known for their high albedo (Beringer et al., 2005) and their influence 
on broadband shortwave reflectance has been thoroughly researched at 
various spatial scales, from plot (Finne et al., 2023) to landscape (Cohen 
et al., 2013). Due to their reflectance properties, changes in lichen cover 
and biomass may result in shifts in surface and soil temperature regimes, 
potentially affecting the release of carbon from the soil to the atmo
sphere (Schuur et al., 2007), and triggering changes in the ecosystem 
composition (Elmendorf et al., 2012; Fraser et al., 2014). Cladonia sp. 
lichens also constitute a key component of reindeer (Rangifer tarandus) 
diet in Fennoscandian reindeer herding areas (Tømmervik et al., 2012), 
consequently being subject to the effects of grazing, trampling, and 
changes in reindeer management regimes (Kumpula, 2006; Akujärvi 
et al., 2014; Cohen et al., 2013). Reindeer grazing on pale lichens could 
therefore trigger shifts in surface albedo in tundra-like environments 
(Bjerke et al., 2024).

However, LST dynamics and lichen volumes can show sharp varia
tions across space, and the linkages between ecosystem structure and 
LST may vary depending on the spatial scale of assessment. For instance, 
Yang et al. (2021) showed how fine scale composition of plant functional 
types accounted for a large share of the variation in thermoregulation at 
the landscape scale. To study the influence of pale lichens on surface 
temperatures adequately, spatially explicit tools able to address multiple 
spatial scales are needed. In this regard, the emergence of machine 
learning algorithms in combination with remote sensing has provided 
the means to model changes in pale lichen cover (Kennedy et al., 2020; 
He et al., 2024) and biomass (Erlandsson et al., 2022). Although these 
studies provide accurate results of temporal changes in lichen cover and 
biomass, the coarse spatial resolution of satellite imagery may conceal 
both the effects of pale lichens on thermal dynamics, and the reindeer 
herbivory effects on pale lichen cover and biomass, since both phe
nomena occur at highly local spatial scales. To counteract the coarse 
grain size of satellites, recent studies have taken advantage of the very 
high-resolution images provided by Unoccupied Aerial Vehicles (UAVs) 
to map the extent of lichen species (Fraser et al., 2022; Richardson et al., 
2021; He et al., 2024).

However, despite the recent advances in UAV-based remote sensing 
techniques and the multiple studies addressing pale lichen effects on 
albedo, there are still several subjects requiring a deeper understanding. 
Most studies utilizing UAVs have focused on estimating lichen cover. As 
Erlandsson et al. (2022) have pointed out, lichen volume or biomass are 
more relevant ecological measures, showing a closer relation with al
bedo and vegetation dynamics in tundra environments. In this regard, a 
significant research gap exists concerning the capability and potential 
limitations of very high-resolution UAV imagery for mapping lichen 
biomass. This gap is particularly relevant given the unique spectral 
behaviour and physiological characteristics of lichens (Nelson et al., 
2022). Additionally, it remains unclear whether lichen biomass, rather 
than the more commonly studied lichen cover, has a measurable impact 
on land surface temperature (LST). Most critically, there is a lack of 
studies explicitly exploring the relationship between pale lichen biomass 
and LST across multiple spatial scales. Resolving this gap could enhance 
our understanding of scale-dependent effects. We address these knowl
edge gaps, specifically asking: 

• Whether UAV-derived imagery can be used to map and model pale 
lichen biomass.

• Whether pale lichen biomass within pale lichen-dominated areas 
have an effect on land surface temperature.

• What is the magnitude of the differences in land surface temperature 
between areas dominated by pale lichens and those dominated by 
vascular vegetation

• How the relationship between land surface temperature, pale lichen 
biomass, and other environmental variables varies between local and 
landscape spatial scales (UAV-based vs satellite-based LST).

2. Materials and methods

2.1. Study sites

We carried out the study on the border between Norway and Finland, 
in the Jávrrešduottar and Sieiddečearru areas, within the Enontekiö 
(FIN) and Kautokeino (NOR) municipalities (Fig. 1). The topography of 
the region is undulating, and the sites are situated at an elevation 
ranging from 250 to 620 m above sea level. In Enontekiö, the average 
winter (December to February) and summer (June to August) temper
atures were − 11.3 ◦C and 9.5 ◦C, respectively, and the average winter 
and summer precipitation 139 and 188 mm, respectively, during 
1991–2020, with snow cover typically lasting from late October to late 
May (Finnish Meteorological Institute, 2024).

The study areas are typical sub-Arctic treeless fell tundra heaths and 
populated by ericaceous shrubs, Betula nana, and Cladonia lichens 
(Kumpula, 2006). Depressions within the landscape feature fens ranging 
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Fig. 1. Panel a shows the location of the study sites in northern Fennoscandia, between Norway and Finland, while panels b and c present a close-up view of 
Sieiddečearru and Jávrrešduottar respectively. The orange lines denote the vegetation sampling transects, the white line indicates the grazing fence, and the dark 
polygons correspond to the areas surveyed with a UAV. Source of background imagery: ESRI satellite. (Proj: ETRS-TM35FIN).
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from poor to moderately rich nutrient status (with soils classified as 
WRB Dystric Histosols according to the Finnish Soil Database2), char
acterised by sedges such as Carex rostrata, Carex rotundata, and Erio
phorum angustifolium, along with bryophytes like Sphagnum riparium, 
S. lindbergii, S. teres, Paludella squarrosa, and Sarmentypnum sarmentosum 
(Kolari et al., 2019).

We selected the two study sites based on the strong contrasts in pale 
lichen coverage and biomass. In the mid-1950s, a fence was built 
following the border between Finland and Norway, to prevent reindeer 
crossing from one country to another. The Norwegian side of the fence is 
used as winter grazing grounds when reindeer mainly feed on Cladonia 
spp. lichens buried under the snow. In contrast, the areas on the Finnish 
side of the border have been used as spring and summer pastures since 
the 1930s (Villoslada et al., 2023), where lichen heaths have been 
subjected to long-term trampling and grazing during periods without 
snow. Over the years, this has led to stark differences in pale lichen 
coverage and volume across the grazing fence (Erlandsson et al., 2022), 
with higher lichen cover and biomass in the Norwegian side.

2.2. Overview of methods

Our methods were divided into 3 main steps: (1) Retrieval of in-situ 
and remote sensing data, (2) Pale lichen biomass and vegetation 
modelling, and (3) Unveiling the effects of pale lichens on LST (Fig. 2). 
We modeled pale lichen biomass and vascular plants cover utilizing 
various co-predictors derived from UAV images and a machine learning 
model, in combination with plot-level data. We further used Generalized 
Additive Models (GAMs) to reveal the effects of pale lichens along with 
topographic metrics and vascular vegetation on land surface tempera
ture (LST) at two contrasting spatial scales. At the local scale, we 
retrieved LST from a UAV-mounted thermal sensor. At the landscape 
scale, we obtained multitemporal LST readings from the Landsat 8 
Operational Land Imager.

2.3. Data collection

We conducted vegetation surveys in the Jávrrešduottar area in July 
2020 and in the Sieiddečearru area in July 2021 (Fig. 1). At both sites, 
we established 5 transects with a length of 400 m each, laid perpen
dicularly across the border fence, resulting in 200 m on each side. Along 
the transects, we positioned a total of 400 vegetation plots (0.5 × 0.5 m) 
at 10-m intervals. We recorded the location of each vegetation plot using 
an RTK GNSS (Topcon Hiper V). We conducted a comprehensive 
assessment of the vegetation within each plot, encompassing the visual 
estimation of %-coverage for all vascular plants, bryophytes, and lichen 
species present. We measured the average height of each vascular plant 
and lichen species using a ruler. The recorded lichen cover data were 
used to estimate the volumetric representations of pale lichens within 
the study plots, utilizing the following formula: 

w = 22× c×h (1) 

where w is lichen dry weight biomass g m− 2, c demotes lichen coverage 
as a percentage, h represents the mean lichen height in millimeters, and 
22 is a regression coefficient between weight and volume estimated in 
controlled lab conditions (Gaare and Tømmervik, 2000; Tømmervik 
et al., 2012).

We considered the following pale lichens: Cladonia arbuscula/mitis, 
Cladonia rangiferina, Cladonia stellaris, Cladonia stygia, Cladonia uncialis, 
Flavocetraria nivalis, Flavocetraria cucullata, Stereocaulon alpinum/ 
paschale, and Thamnolia vermicularis. From Cladonia lichens, we included 
the species without basal squamules and with (richly) branched or spiky 

podetia, without cups (Hodgetts, 1992). Other Cladonia species, such as 
C. crispata and C. gracilis, occur in the study region as well but with low 
cover and volume compared to the abundance of the other species. 
When selecting pale lichens, we considered the color, structure, and 
abundance of species. First, we selected mat-forming lichen species that 
are white or pale (Erlandsson et al., 2022). Although we also identified 
all miniature cup-forming or “needle-like” Cladonia species, these were 
later excluded from analysis due their wide range of colors, from pale to 
dark brown, and their sparse occurrence (<1 % in the field plots). 
Further, we grouped vascular plant species in functional and tax
onomical plant groups as follows: Betula nana, other deciduous shrubs 
(including primarily Salix species and Vaccinium myrtillus, evergreen 
shrubs (including primarily Empetrum nigrum and Calluna vulgaris), 
forbs, graminoids, and the family Lycopodiaceae.

2.4. UAV data collection and pre-processing

We carried out one UAV survey at each site (mid-July- 2020 and mid- 
August 2021), encompassing 434 ha at Jávrrešduottar and 358 ha at 
Sieiddečearru, respectively, utilizing a Sensefly Ebee X fixed wing UAV 
equipped with a Parrot Sequoia 1.2-megapixel 4-band multispectral 
sensor (Green [530–570 nm], red [640–680 nm], red edge [730–740 
nm], and near-infrared [770–810 nm]) and a SenseFly S.O.D.A RGB 
camera. Preceding each multispectral flight, we performed a radio
metric calibration of the Parrot Sequoia sensor using an Airinov cali
bration panel. Further, we collected land surface temperature (LST) 
imagery over a 1000 × 240 m transect across the fence at Jávrrešduottar 
(Fig. 2) on 29/06/2023 between 12:20 and 13:00 (EEST). For this 
purpose, we used a DJI Matrice 300 RTK equipped with a Micasense 
Altum-PT camera, which incorporates a built-in radiometrically cali
brated FLIR LWIR Boson thermal sensor with a thermal sensitivity of 
0.05 ◦C. The spatial resolution of the remotely sensed data was 16, 10, 
and 3.5 cm per pixel for the thermal (Altum-PT), multispectral (Parrot 
Sequoia), and RGB (S.O.D.A. RGB) images respectively. All flights were 
undertaken in sunny conditions and with windspeeds under 7 m/s. Both 
the fixed-wing and quadcopter flights were set in follow terrain mode, 
flight altitudes of 120 m for Ebee X, and 60 m for Matrice 300, and front 
and side overlaps of 75 % and 70 % for Ebee X, and 70 and 75 for Matrice 
300. The thermal survey required two flights, while the multispectral 
and RGB required 5 flights per sensor at Jávrrešduottar and 4 at 
Sieiddečearru.

We processed UAV imagery sets in eMotion 3®, utilizing a post- 
process kinematic correction to ensure accurate geolocation of the im
ages. We employed RINEX observation and navigation files sourced 
from the FinnRef CORS network to enhance positional accuracy (Zhang 
et al., 2019a, 2019b). Subsequently, we generated RGB, multispectral, 
and thermal orthomosaics using Pix4D v.4.3.31®, resulting in one RGB 
and two spectral orthomosaics for each research site. To assess the UAV- 
derived LST imagery, we measured surface temperature using a hand
held infrared thermometer gun in 20 randomly selected points located 
with an RTK-GNSS device, and compared both readings using a pear
son’s r (considering correlations statistically significant at p < 0.05).

2.5. Pale lichen biomass and vegetation fractional cover models

2.5.1. Co-predictors set
The co-predictor set used in the machine learning models consisted 

of a combination of multispectral (derived from the Parrot Sequoia 1.2- 
megapixel sensor) and topographic spatially continuous raster layers 
(derived from the S.O.D.A. RGB sensor). We computed a set of 17 
vegetation indices (VIs) (Table 1) using the spectral band raster layers. 
Among these, we included the biological soil crust index (BSCI), which 
has been specifically created to map lichen-dominated soil crusts (Chen 
et al., 2005). We selected the remaining VIs based on their ability to 
disentangle spectral signatures associated with differences in pigmen
tation, AGB, water content, leaf area, or soil reflectance (Villoslada 

2 https://paituli.csc.fi/download.html?data_id=luke_soildb_250k_2016_shp_ 
euref, accessed on 21/02/2025
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et al., 2023).
Topography has been previously linked to the abundance and pro

ductivity of lichen species (Bruun et al., 2006). To account for the local 
variations in topography and their potential effect on pale lichen 
biomass, we first derived a set of digital terrain models (DTMs) from the 
UAV data. We used Structure-from-Motion (SfM) in combination with 
Multi-View stereo photogrammetry to reconstruct 3D point clouds from 
the UAV-derived RGB images in Pix4Dmapper v.4.3.31® (Smith et al., 
2016). We then used a Cloth Simulation Algorithm (Zhang et al., 2016) 
in CloudCompare (Cloud Compare 2.12.4, 2024) to identify and filter 
out 3D points corresponding to prominent vegetation such as Betula 
nana and ericaceous shrubs. We set the Cloth Simulation Algorithm 
parameters as follows: cloth resolution 0.1 m, classification threshold 
0.1 m, and terrain set to slope. Once filtered, we used the 3D point cloud 
to generate DTMs, for which we set a spatial resolution of 10 cm per 
pixel, matching that of the multispectral images. Using these as a basis, 
we computed four commonly used topographic indices: Slope, topo
graphic position index (TPI, neighbourhood radius = 20 m), topographic 
wetness index (TWI), and aspect. Given the large extent of the areas and 
the size of the datasets, we found the TPI radius of 20 m to be a good 
compromise between computational efficiency and representativity of 
the terrain’s morphology. For aspect calculations, we first aggregated 
the 10 cm DTMs to match the size of the units of assessment at the local 
(5 m diameter hexbins) and landscape scale (30 m Landsat 8 pixels) 
using the Warp tool with nearest neighbour interpolation in QGIS 3.34. 
TPI estimates the relative topographic position of a point relative to the 
mean elevation within a predetermined buffer (Weiss, 2001), while TWI 
provides an estimation of the effects of topography of hydrological 
processes by combining upslope contributing area and slope (Sörensen 
et al., 2006). Here, we used the SAGA wetness index, a variant of the 
TWI that uses iterative modifications of the catchment area based on the 
FD8f flow algorithm (Kopecký et al., 2021). We generated the indices in 
SAGA GIS v 2.3.2. In addition to VIs and topographic indices, we 
included the four spectral bands (red, green, near-infrared, and red- 
edge) in the co-predictors dataset. The co-predictor layers were 

aligned with each other so that raster cells in the dataset overlapped 
perfectly.

2.5.2. Extreme gradient boosting model
We used an Extreme Gradient Boosting algorithm (XGBoost) to 

model pale lichen biomass and cover, as well as fractional cover of bare 
soil and functional and taxonomical plant groups (all vascular plants, 
Betula nana, other deciduous shrubs, evergreen shrubs, forbs, grami
noids, and the family Lycopodiaceae). XGBoost can make predictions 
beyond the limits of the training dataset when dealing with continuous 
variables. In addition, XGBoost is known for its robustness to class 
imbalance and noise, and its ability to handle multicollinearity in the co- 
predictors set (Man et al., 2018; Zhang et al., 2019b). We used the in
formation collected within the field plots as training data, following a 
random 50/50 split-sample approach, where 50 % of the plots were 
devoted to model training, and 50 % to validation of modelling results. 
We averaged the value of all pixels from each co-predictor layer (spec
tral bands, VIs, and topographic indices) falling within each sampling 
polygon, and assigned the corresponding pale lichen biomass, pale 
lichen fractional cover, bare soil fractional cover, total vascular vege
tation %-cover, and plant functional and taxonomical group fractional 
cover values. To avoid potential biases and noise associated with single 
model runs, we iterated each model 50 times, with a new random 
training/validation split in each model iteration. We calculated the 
result maps as the mean of the 50 iterations results. Additionally, we 
modeled the distribution of water bodies following a binary classifica
tion implemented using an XGBoost algorithm. We manually digitized 
the training/validation dataset, visually identifying water bodies in the 
UAV-derived RGB images. For consistency, we digitized 50”water” and 
50 “no water” polygons of the same size as the vegetation plots. This 
process resulted in a binary water mask raster layer. We validated the 
results of all models using root mean squared error (RMSE), range- 
normalized root mean squared error (nRMSE), mean absolute error 
(MAE), bias, and percentage of variance explained by the model (R2). 
Finally, we assessed co-predictor importance using the Gain metric 

Fig. 2. Summarized workflow representing the main steps in this study. DTM: Digital terrain model, GAMs: Generalized additive models, LST: Land surface tem
perature, TPI: Topographic position index, TWI: Topographic wetness index, UAV: Unmanned aerial vehicle.
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within XGBoost (Chen et al., 2019).

2.6. Landsat 8 land surface temperature

To address the landscape scale in the study, we compiled LST im
agery corresponding to the entire Landsat 8 collection, i.e., from 2013 to 
2023. We undertook a temporal aggregation to avoid potential artifacts 
and smooth out the effects of single-date or single-year LST readings. We 
restricted the Landsat-derived LST data to a 10-year window to ensure 
the representativity of the pale lichen biomass estimates based on field 
data from 2020 and 2021. Previous studies (Erlandsson et al., 2022) 
have shown drastic shifts in lichen volume in our study area over several 
decades, whereas Den Herder et al. (2003) found no significant differ
ences in Cladonia spp. biomass within a 13-year period in a heathland in 
Finnish Lapland. We selected Landsat 8 scenes overlapping the study 
sites in the months of July and August, therefore avoiding late snowmelt 
areas (Kivinen et al., 2012) and their potential influence on LST 
retrieval.

We retrieved LST values at a spatial resolution of 30 m using the 
methodology developed by Ermida et al. (2020) in Google Earth Engine 
(Gorelick et al., 2017). The authors used a Statistical Mono-Window 
(SMW) algorithm to compute LST as a linear function of prescribed 
surface emissivity and Landsat-observed top of the atmosphere bright
ness temperature. The prescribed values of surface emissivity were ob
tained from the ASTER GEDv3 dataset (Malakar et al., 2018) and a 
vegetation adjustment using Landsat-derived NDVI. The original Land
sat 8 at-sensor brightness temperature data (Band 10, 10.6–11.2 μm) are 
originally recorded at a spatial resolution of 100 m per pixel and 
resampled by the USGS to 30 m per pixel using the cubic convolution 
method during Level-1 product generation (Xue et al., 2020). We 
employed Total Column Water Vapor (TCWV) values from NCEP/NCAR 
reanalysis data (Kalnay et al., 2018) to resolve the atmospheric effects 
on the Landsat thermal infrared observations.

Finally, we preselected images based on their cloud cover informa
tion, retrieved from the BQA quality assessment band, setting a 
threshold of 30 %. We visually inspected each of the preselected Landsat 
8 LST scenes to ensure that the study sites were not affected by gaps, 
haze, or cloud shadows. The final list of L8 LST scenes can be found in 
the supplementary materials (table S.1).

To aggregate and combine L8 LST data with the UAV-derived pale 
lichen biomass estimates, we transformed the L8 images into vector 
grids, where individual polygons aligned with the corresponding raster 
image pixels. We calculated the total July–August average LST during 
2013 and 2023 within each polygon, as well as the average LST in July 
and August each year. To compare the UAV-derived LST measurements 
with a baseline, we computed the average of the UAV LST readings 
within the extent of each L8 pixel and correlated this with the 10-year 
summer LST average obtained from L8. To better visualize potential 
differences between single-date UAV and multi-date L8 LST, we created 
a map depicting the departure from the 10-year average, computed as 
the difference between the UAV and the L8 readings. The results of this 
step are presented in the supplementary materials (fig. S.3).

2.7. Effects of pale lichen biomass and fractional cover on land surface 
temperature at the local and landscape scales

We analysed the effects of pale lichen biomass alongside other 
covariates on LST at two different spatial scales, hereinafter referred to 
as local scale and landscape scale. The aim of this multi-scale analysis is 
to explore whether the intensity of the relationship between pale lichen 
biomass and LST varies across spatial scales, and whether the relative 
importance of other biophysical factors influencing this relationship 
show scale-specific patterns. We built the local scale analysis upon the 
UAV-derived LST data collected at the transect site and a number of 
biophysical co-predictor layers overlapping the transect. To avoid pixel- 
level noise and ensure a balance between capturing the fine-grain 

Table 1 
List of vegetation Indices selected in the present study to predict lichen biomass 
and vascular vegetation fractional cover. G: Green, GNIR = (G + R + NIR)/3, 
NIR: Near Infrared, R: Red.

Vegetation and 
textural index

Equation Reference

Biological Soil 
Crust Index 
(BSCI)

[1–2*abs(R-G)] /GRNIR* Fang et al. 
(2015)

Red edge 
chlorophyll 
index (CIre)

(NIR/Rededge) – 1
Gitelson et al. 
(2005)

Chlorophyll 
vegetation 
index (CVI)

(NIR/G) × (R/G) Vincini et al. 
(2007)

Datt4 R/G*Rededge Datt (1998)

Difference 
Vegetation 
Index (DVI)

NIR-αR 
α = 0.96916

Richardson 
and Everitt 
(1992), 
Maguigan 
et al. (2016)

2-band 
Enhanced 
Vegetation 
Index (EVI2)

2.5[(NIR-R)/(NIR + 2.4R + 1)]

Jiang et al. 
(2008), Jin 
and Eklundh 
(2014)

Green 
Difference 
Index (GDI)

NIR-R + G
Gianelle and 
Vescovo 
(2007)

Green 
Normalized 
Difference 
Vegetation 
Index 
(GNDVI)

(NIR-G)/(NIR + G)

Gitelson et al. 
(1996), 
Naidoo et al. 
(2019)

Green-Red 
Difference 
Index 
(GRDI)

(G-R)/(G + R)
Gianelle and 
Vescovo 
(2007)

Green Ratio 
Vegetation 
Index 
(GRVI)

NIR/G

Sripada et al. 
(2006), 
Naidoo et al. 
(2019)

Modified Soil 
Adjusted 
Vegetation 
Index 
(MSAVI)

0.5*
[

2*NIR −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2*NIR + 1)2
√

− 8*(NIR − R)
]

Qi et al. 
(1994), Jin 
and Eklundh 
(2014)

Normalized 
Difference 
Vegetation 
Index 
(NDVI)

(NIR-R)/(NIR + R)
Rouse et al. 
(1974)

Red edge 
normalized 
Difference 
Vegetation 
Index 
(NDVIre)

(NIR-Rededge)/(NIR + Rededge)

Gitelson and 
Merzlyak 
(1994), Kross 
et al. (2015)

Normalized 
Difference 
Water Index 
(NDWI)

(G-NIR)/(G + NIR)
He et al. 
(2021)

Red edge 
triangular 
vegetation 
index (core 
only) 
(RTVIcore)

100(NIR-Rededge)-10(NIR-G)

Kross et al. 
(2015), 
Clausen et al. 
(2013)

Soil Adjusted 
Vegetation 
Index (SAVI)

[(NIR-R)/(NIR + R + L)](1 + L) 
L (soil adjustment factor) = 0.5

Huete (1988), 
Ullah et al. 
(2012)

Red edge 
simple ratio 
(SRre)

NIR/Rededge

Gitelson and 
Merzlyak 
(1994), Kross 
et al. (2015), 
Naidoo et al. 
(2019)
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characteristics of the landscape and maintaining a sufficient amount of 
data for subsequent GAM analyses, we aggregated LST, pale lichen 
biomass, and all additional UAV-derived variables into maps composed 
of hexagonal bins (hexbin) with a diameter of 5 m. While the hexbin size 
is somewhat arbitrary, it represents a practical compromise that ach
ieves this balance (Villoslada et al., 2023). Within each hexbin, we 
calculated the average value of each variable. Further, we undertook a 
regional scale analysis using the total July–August average L8 LST. To 
match the spatial scales of L8-derived LST and UAV-derived pale lichen 
biomass, we calculated the average of pale lichen biomass and other 
UAV-derived variables within each of the L8 vector grid polygons.

Prior to the analysis, we undertook a multicriteria filtering approach 
to disentangle the multiple and complex factors potentially affecting LST 
in tundra landscapes. Firstly, we narrowed down the areas under anal
ysis using a TPI-based landform classification in SAGA GIS. The algo
rithm uses the topographic position index to derive a set of 10 landforms 
(Fig. S.1 in supplementary materials). To rule out the potential effects of 
soil moisture gradients on LST, we focused the assessment on the land
forms classified as plains, open slopes, and upper slopes, which are also 
the dominant landforms in the study area, covering 76 % of the studied 
landscape. This way, we discarded landforms such as streams, drainages, 
and valleys, associated to higher soil moisture levels and very low 
occurrence of lichens. We further refined our analysis by defining 
threshold for fractional vascular vegetation cover, selecting areas with a 
vascular vegetation cover below 50 %. By doing so, we partially avoid 
the effects of evapotranspiration, stomatal conductance, or canopy 
complexity (Gersony et al., 2016) or on LST associated to densely 
vegetated areas.

We assessed the relationship between pale lichen biomass and land 
surface temperature using generalized additive models (GAMs) due to 
their ability to handle complex and nonlinear relationships (Simpson, 
2018; Viana et al., 2022). We constructed the GAMs utilizing the mgcv 
package (Wood and Wood, 2015), with restricted maximum likelihood 
(REML) and a gaussian distribution. Smooth parameters were set to 4 
degrees of freedom (k = 4), which allows to unveil non-linear re
lationships while avoiding overfitting. In addition to pale lichen 
biomass, we included eight other explanatory variables that have shown 
strong linkages with LST in previous studies: pale lichen fractional 
cover, vascular plant vegetation fractional cover, aspect, topographic 
position index, topographic wetness index, soil fractional cover, distance 
to water (calculated in QGIS 3.34 as the Euclidean distance between all 
pixels and pixels classified as water in the previous step), and elevation. 
For instance, Hope et al. (2005) linked increases in vegetation fractional 
cover and NDVI with increases in LST. Likewise, elevation and aspect 
(He et al., 2019a, 2019b, Nill et al., 2019), soil moisture (Nill et al., 
2019), bare soil and water (Muster et al., 2015), and topographic posi
tion (Van De Kerchove et al., 2013) have shown strong relationships 
with LST in tundra and mountainous environments. This wider set of 
explanatory variables aims at addressing the complexity of land surface 
temperature dynamics, as well as to frame the relative contributions of 
pale lichen biomass to land surface temperature. We ran a variance 
inflation factor (VIF) analysis to detect multicollinearity and discard 
highly correlated variables, considering a VIF value higher than 10 as a 
strong indicator of multicollinearity (Zhao et al., 2014, Kanaji et al., 
2017, He et al., 2019a, 2019b). We used to vif.gam function in the R 
package mgcv.helper3 to run the VIF tests. To select the model with the 
highest explanatory power while minimizing the effect of irrelevant and 
redundant explanatory variables, we ran all possible additive combi
nations of variables (Barboza et al., 2019; Quillfeldt et al., 2022) using 
the function dredge in the R package MuMIn (Barton and Barton, 2015). 
The dredge function ranks models based on their ability to minimize the 
Akaike information criterion (AIC). We ran the dredge variable selection 
on the full models for UAV and Landsat 8 LST.

To assess the importance of each explanatory variables in the GAMs, 
we used two different yet complementary metrics: Relative importance 
(RI) and partial deviance explained (D2). Both metrics were computed 
for the selected local and landscape scale models. To estimate the RI of 
each explanatory variable, we applied the sum of AICc weights (AICcw) 
method (Barboza et al., 2019). The dredge function ranks candidate 
models based on the Akaike information criterion for small sample sizes 
(AICc) and computes differences in AICc (ΔAICc) and AICc weights 
(AICcw) for each model. AICcw represent the likelihood that a given 
model is the best among the set of fitted models (Debeffe et al., 2017), 
given the set of candidate models and the explanatory dataset (Burnham 
and Anderson, 2002). Following the work developed in previous studies 
(Barboza et al., 2019; Burnham and Anderson, 2002; Zuur et al., 2009), 
we computed the RI of each explanatory variable retained in the selected 
models extracting a list of candidate models with a ΔAICc ≤4, and 
subsequently calculating sum of the AICcw of those models where the 
variable was included. Thus, the RI (ranging between 0 and 1) repre
sents the likelihood of a particular explanatory variable to be included in 
the best performing model. We further calculated the partial D2 of each 
co-predictor, defined by Lai et al. (2024) as the individual D2 explained 
by each predictor from the overall D2 explained by the model, where all 
partial D2 ad up to 100 %. Therefore, partial D2 represents the relative 
contribution of each explanatory variable to the overall explanatory 
power of the model. We calculated the proportion of deviance explained 
by each predictor using the gam.hp package (Lai et al., 2024).

To discriminate potential site-specific conditions at the L8 landscape 
scale, we ran GAMs for Jávrrešduottar and Sieiddečearru separately. To 
find whether there are differences in land surface temperature between 
pale lichen-dominated and vascular vegetation-dominated areas, we 
used a Welch ANOVA test followed by a Games-Howell pairwise post- 
hoc test, considering differences statistically significant when p <
0.05. Prior to the test, we performed a data filtering process. At the local 
scale, we defined a 50 % fractional cover threshold for an individual 
hexbin to be ascribed to one of the vascular plant groups defined in the 
study, thereby discarding highly heterogeneous hexbins. For a hexbin to 
be considered dominated by pale lichens, we defined three thresholds: 
over 50 % pale lichen fractional cover, under 50 % vascular vegetation 
fractional cover, and average pale lichen biomass over the 3rd quartile 
of the biomass distribution within the study areas.

At the landscape scale, we compared the average LST between pale 
lichen-dominated and vascular vegetation-dominated L8 pixels, 
following the same thresholding criteria as above. At this scale, the 
highly mixed and patchy nature of tundra heath vegetation prevented us 
from selecting L8 pixels with a dominant vascular plant group; there
fore, we pooled all vascular vegetation into one group. We compared 
LST values monthly, calculating the average L8 LST corresponding to 
July and August each year within selected pixels. For each month with 
available LST data, we undertook pairwise comparisons using a Mann- 
Whitney U test (considering differences statistically significant at p <
0.05), given the non-normal distribution of the dataset.

3. Results

3.1. UAV-based lichen and vascular vegetation models

The XGBoost models yielded moderate to high accuracies (Table 2), 
with the lichen biomass model reaching a R2 of 0.63 and nRMSE of 0.09. 
The highest accuracies were achieved in the evergreen shrubs cover 
model (R2 0.71, nRMSE 0.11), while the lowest values corresponded to 
the bare soil cover model with an nRMSE of 0.68. The bias of predictions 
was low, with response variables being generally slightly under
estimated. The maps generated by the XGBoost models (Fig. 3) clearly 
reflect the contrasting reindeer grazing and trampling patterns across 
the fence: Both pale lichen fractional cover and biomass show consid
erably higher values in Norway.

Among all the variables used in the pale lichen biomass predictions, 3 (https://github.com/samclifford/mgcv.helper, accessed on 07/05/2024)
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topography metrics (aspect, TPI, and slope, Fig. S.2) emerged as the 
most important, according to the Gain metric. Pale lichen percentage 
cover displayed similar trends, with TPI, red band, and aspect being the 
most important variables.

3.2. Local scale effects of pale lichen biomass and fractional cover on LST

At the local scale, the VIF analysis did not show multicollinearity 
between co-predictors (VIF < 10 in all cases). The most parsimonious 
model included five predictors (lichen biomass, vegetation cover, 
aspect, TPI, and elevation), explaining 47.26 % of the deviance in land 
surface temperature (Table 3). The relative importance and the partial 
D2 explained by each of the predictors show the relatively larger 

influence of elevation (RI = 1.00, partial D2 = 60.35 %) and pale lichen 
biomass (RI = 1.00, partial D2 = 21.36 %) on LST in comparison with 
other covariates. In contrast, TPI and vascular vegetation cover showed 
relatively lower contributions, with D2 values of 2.52 % and 4.56 % 
respectively, and RIs of 0.98 and 0.51 All selected predictors showed 
significant contributions (pv < 0.05) to the model.

A gradual increase in pale lichen biomass led to a smooth decrease in 
land surface temperature (Fig. 4.a). On the contrary, elevation (Fig. 4.c) 
showed a much more complex relationship with land surface tempera
ture, following a sinusoidal correlation. Other variables display weaker 
relationships with LST (Fig. 4). For instance, increases in the cover of 
vascular vegetation led to a very slight increase in LST (Fig. 4.b). 
Additionally, following the expected trend, south facing slopes pre
sented higher LST when compared to other orientations (Fig. 4.e).

LST exhibited marked and significant (pv < 0.05) differences be
tween plant and lichen groups, as revealed by the violin plots (Fig. 5) 
and the Welch ANOVA and Games-Howell tests (Table S.2 in supple
mentary materials). The lowest average LST corresponded to areas 
characterised by a dense pale lichen coverage (avg. LST = 22.79 ◦C), 
comparable to that of the other deciduous group (22.84 ◦C). Areas 
covered by species corresponding to the evergreen species presented the 
highest LST value (33.81 ◦C) significantly higher than the average LST 
associated to Betula nana (26.33 ◦C) and other deciduous species.

3.3. Landscape scale effects of pale lichen biomass and fractional cover 
on LST

In addition, there was a marked difference in the time-aggregated 
LST between study sites, with Sieiddečearru displaying generally 

Table 2 
Validation results for the XGBoost models predicting pale lichen biomass, pale 
lichen fractional cover, soil fractional cover, vascular vegetation fractional 
cover, and fractional cover of plant functional and taxonomical groups. R2: 
Percentage of variance explained by the model; RMSE: root mean squared error; 
nRMSE: range-normalized root mean squared error; MAE: mean absolute error.

R2 RMSE (g 
m–2)

nRMSE Bias MAE

Pale lichen biomass 0.63 203.89 0.09 4.76 110.66
Pale lichen cover 0.68 13.70 0.16 0.70 9.36
Vascular vegetation cover 0.70 13.35 0.14 0.22 9.34
Bare soil cover 0.67 13.70 0.68 0.14 9.52
Betula nana cover 0.66 8.50 0.10 − 0.02 5.98
Other deciduous species 

cover
0.65 6.28 0.07 − 0.08 3.39

Evergreen shrubs cover 0.71 10.86 0.11 0.35 7.21

Fig. 3. XGBoost model predictions for pale lichen biomass (a,d), pale lichen fractional cover (b, e), and total vascular vegetation fractional cover (c,f). The maps 
represent sections of the study sites Sieiddečearru (a, b, and c) and Jávrrěsduottar (d, s, and f), overlaid on top of a shaded relief map. Pale lichen biomass is expressed 
as gr m− 2 and pale lichen and vascular vegetation cover as percentage cover within a pixel. The dark grey line denotes the grazing fence between Finland 
and Norway.
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lower temperatures than Jávrrešduottar at the same time period (Fig. 6. 
a). The comparison between the single-date UAV and the 10 years 
average L8 LST data yielded a strong correlation (pearson’s r = 0.84, p <
0.001, RMSE = 2.83 ◦C) (Fig. S.3) even though the differences in spatial 
resolution between L8 and UAV were clearly observable in the maps 
(Fig. 6). The comparison map further revealed a small departure of the 
UAV LST readings from the 10 years average, with difference values 
ranging between − 3.46 ◦C and 6.81 ◦C (Fig. S.3).

The VIF analysis at the landscape level revealed multicollinearity 
between pale lichen biomass and cover at Jávrrešduottar, and therefore 
only biomass was included in the model computations. The landscape- 
scale GAMs analysis combining UAV and Landsat 8 datasets revealed 
distinct patterns at the study sites. The most parsimonious model in 
Jávrrešduottar included 5 co-predictors (lichen biomass, vegetation 
cover, aspect, bare soil cover, and elevation), presenting an overall D2 of 
65.8 % (Table 4), therefore entailing a higher explanatory power than 
the local-scale UAV-based model (Table 3). Similarly, the partial D2 and 
RI corresponding to each of the smooth terms was generally higher than 
that of the UAV-based model, with elevation and pale lichen biomass 
standing out as the most important smooth terms (RI and partial D2 

values of 1.00 and 55.21 % for elevation, and 1.00 and 32.55 % for 
lichen biomass respectively). On the contrary, the Sieiddečearru model 
underperformed when comparing the total and partial D2 values to the 
Jávrrešduottar Landsat 8 and the UAV models (overall D2 = 26.50 %). In 
this model, it is worth mentioning the role of aspect in explaining the 
variability of LST within the Jávrrešduottar study site (RI = 0.99, partial 
D2 = 54.70 %), as well as the meagre contribution of pale lichen biomass 
(RI = 0.54, partial D2 = 4.68).

The GAM plots for Jávrrešduottar (Fig. 7) confirm that models based 
on the combination of aggregated L8 time series and UAV data present 
stronger trends than those based on single-time UAV data only. The 
effect of pale lichen biomass on the average summer LST (RI = 1.00, 
partial D2 = 32.55 %, Fig. 7 a) showcases a potential saturation effect, 
where the initially negative correlation gradually flattens as biomass 
increases. The effect of vascular vegetation on LST (Fig. 7.b) in lichen- 
dominated areas followed the trend previously observed at the local 
scale (Fig. 4), with a positive correlation between vascular vegetation 
fractional cover and LST. The partial contributions of each predictor also 
revealed a non-linear positive relationship between elevation and LST 
(RI = 1.00, partial D2 = 55.21, Fig. 7.e), with a flattening trend towards 
higher elevations.

3.4. LST time series

The mean monthly (July and August) LST between 2013 and 2023 
followed a very similar trend in L8 pixels dominated by pale lichens and 
those dominated by vascular vegetation (Fig. 8). Further, the Mann- 
Whitney U test revealed significant differences in LST between 
vascular vegetation and lichen-dominated in all months except one 
(August 2013). L8 pixels dominated by vascular vegetation showed a 
significantly higher LST than those dominated by pale lichens.

4. Discussion

4.1. UAV-based models of pale lichen cover and biomass

The models we developed achieved moderate to high accuracies, 
both for pale lichen percentage cover and pale lichen biomass (R2 values 
of 0.63 and 0.68, respectively). These results are especially relevant 
considering the marked spatial heterogeneity of tundra vegetation 
(Fletcher et al., 2012; Virtanen and Ek, 2014), and the fine spatial-scale 
effects of reindeer herbivory and trampling on vegetation (Egelkraut 
et al., 2020). Our centimetre-scale models provide an accurate visual 
representation of variations in pale lichen coverage and biomass, 
revealing the differences in lichen biomass across the fence at our study 
sites (Fig. 3), while simultaneously predicting vascular vegetation 
composition (Table 2). This is essential to place the potential effects of 
pale lichen on LST in the right context and account for the effects of 
vascular vegetation on local thermal regimes. The pale lichen biomass 
spatial patterns obtained for the study sites aligned well with those 
presented by Erlandsson et al. (2022) at the same locations, with marked 
differences in pale lichen across the Finnish-Norway border fence.

The XGBoost variable importance assessment revealed the key role of 
topography metrics in predicting pale lichen biomass, confirming pre
vious observations that spectral information may not always be suffi
cient to reflect environmental factors underpinning ecosystem structure 
(Martínez Prentice et al., 2021; Erlandsson et al., 2022; Villoslada et al., 
2022). Specifically in the case of pale lichen biomass models, the three 
most important co-predictors were aspect, TPI, and slope. In tundra 
landscapes, these three variables have been linked to moisture regimes 
and snow depth (Bennett et al., 2021; Meloche et al., 2022), which in 
turn, play a crucial role in the development of lichen mats (Inoue et al., 
2017; Barták et al., 2021). Local topography is also tightly linked to 
reindeer grazing patterns in wintertime, when reindeer dig craters 
through the snow to access lichens (Ims Vistnes and Nellemann, 2008). 
Exposed ridges with shallow snow cover offer easier digging grounds, as 
opposed to local depressions and snow accumulation areas, or areas 
characterised by hardened snow and ice layers, which may be avoided 
by reindeer (Helle, 1984; Kumpula and Colpaert, 2007).

5. Effects of pale lichen biomass on land surface temperature at 
multiple scales

The GAMs captured the effect of pale lichen biomass on LST, with 
larger biomass leading to decreased LST values (Tables 3 and 4). How
ever, the magnitude of this effect appeared to be dependent on the 
spatial and temporal scales of analysis, with a much higher percentage of 
variance explained by the L8-based model (overall D2 = 65.8 %, pale 
lichen biomass partial D2 = 32.55 % at Jávrrešduottar) than the UAV- 
based model (overall D2 = 47.26 %, pale lichen biomass partial D2 =

21.36 % at the transect site). Regarding the spatial scale of assessment, it 
has been previously elucidated that the aggregation of information 
associated to large-size pixels leads to a decrease in the heterogeneity of 
the data captured, but a higher degree of model fit (Mao et al., 2022; 
Räsänen and Virtanen, 2019). In addition to this, local-scale factors such 
as wind, eddies, moisture, and cloud shading may be partially overriding 
the effect of pale lichen biomass and other UAV-derived co-predictors on 
LST.

Table 3 
Results of GAMs assessing the effect of nine smooth terms on UAV-derived LST 
for the transect site. The model summary includes the total percentage of 
deviance explained (D2), the F statistic, the relative importance of each smooth 
term (RI), and the partial deviance explained by each predictor (partial D2). 
Predictors are shown as GAM smooth terms. TPI: Topographic Position Index. 
Significant contributions of smooth terms are highlighted with asterisks, where * 
indicates significant contribution at the 0.05 level, ** indicates significant 
contribution at the 0.01 level, *** indicates significant contribution at the 0.001 
level, and **** indicates significant contribution at the 0.0001 level. ns: not 
significant.

Smooth terms F value* pv Relative 
importance

Partial D2 

(%)

s(lichen biomass) 27.17 **** 1.00 21.36
s(vegetation cover) 2.45 *** 0.51 4.56
s(aspect) 6.33 *** 0.84 11.20
s(tpi) 2.93 **** 0.98 2.52
s(elevation) 17.91 **** 1.00 60.35
Overall deviance 

explained
47.26%

*The F value evaluates the significance of each smooth term in the model, 
calculated as the ratio of the mean square of the model to the mean square of the 
residuals.
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Fig. 4. Generalized Additive Models (GAMs) relating 5 environmental co-predictors and land surface temperature. Each plot represents the partial effects of pale 
lichen biomass (a), vascular vegetation cover (b), elevation (c), TPI (d), and aspect (e) on LST. The GAMs were calculated using UAV-derived data corresponding to 
the transect site. D2: Partial deviance explained. RI: Relative importance. TPI: Topographic Position Index. LST: Land surface temperature.
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We argue the temporal scale of assessment partially explains the 
differences in the explanatory power between the UAV-scale and L8- 
scale modes. We retrieved LST readings at the transect site on a single- 
date 24-ha UAV flight. Within this restricted timeframe, factors such 
as atmospheric conditions, wind speed and direction, and radiance, and 
sensor-related issues such as stability of the thermal readings and self- 
heating, could significantly affect the LST measurements, masking the 
effects of topography and vegetation (Elfarkh et al., 2023; Kelly et al., 
2019). However, it is worth noting that the UAV LST readings showed a 
small departure from the 10 years LST mean (Fig. S.3). In addition, it has 
been stated that rapid variations in LST due to local meteorological and 
environmental factors introduce within-flight uncertainty in UAV sur
veys (Elfarkh et al., 2023). This effect is likely amplified by the very high 
spatial resolution of the thermal images collected (16 cm per pixel in this 
study). On the other hand, the satellite datasets we used in this study are 
temporally aggregated as the summer (July–August) mean of all avail
able and clean LST scenes, smoothing out the effects of single-date or 
single-year readings in seasonal estimates (Attiah et al., 2023; Carrasco 
et al., 2019).

Regardless of its intensity, the effect of pale lichen biomass on LST is 
consistent across spatial scales. Our observations align well with previ
ously published research on the relationship between pale lichens and 
albedo. At plot scales, Finne et al. (2023) recently found that a higher 
coverage of ecorticate light-coloured lichens was associated to higher 
albedo, measuring a maximum value of 0.389, which is the highest 
broadband albedo recorded for a vegetated surface ever. At the land
scape scale, Cohen et al. (2013) used MODIS data to unveil higher al
bedo values on the Norwegian side of the fence (characterised by higher 
pale lichen biomass) during the snow-free season. Here, we confirm that 
dense pale lichen mats have an essential role in regulating micro- 
climate.

Among the set of co-predictors, elevation entailed the highest RI and 
D2 in both local-scale and landscape-scale GAM models. This is not 
surprising, considering that in treeless tundra hills, soils at higher ele
vations are commonly dryer due to less snow accumulation during 
wintertime, a higher degree of wind exposition, and thinner soils 
(Kemppinen et al., 2017; Aalto et al., 2022). These environmental gra
dients combined with higher radiation and surface warming explain the 

Fig. 5. Violin plots showing the average land surface temperature values (LST) for each plant and lichen group. The black dots inside the boxplot represent the mean 
LST value, while the curves on each side of the boxplots indicate the kernel density estimate of hexbins. Asterisks indicate statistical differences between plant 
functional and taxonomical groups, as indicated by the Games-Howell tests (ns = p > 0.05, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001, **** = p ≤ 0.0001).
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effect of elevation on LST, clearly visible on the landscape-scale model.
The landscape-scale model also unveiled clear differences between 

sites, with the Sieiddečearru GAM, explaining only 26.5 % of the total 
deviance (65.8 % at Jávrrešduottar), potentially indicating the influence 
of site-specific characteristics. We attribute these differences to the 
rather homogeneous and subtle environmental gradients that charac
terize Sieiddečearru site, which may be not adequately captured by the 
L8-derived LST, suggesting a potential spatial scale mismatch between 
UAV and satellite datasets. Both elevation and pale lichen biomass show 
a much higher variability in Jávrrešduottar (581.61 ± 17.55 m average 
elevation and 284.76 ± 183.55 g m− 2 average pale lichen biomass) than 
in Sieiddečearru (488.70 ± 10.51 m average elevation and 162.22 ±
67.83 g m− 2 average pale lichen biomass).

5.1. LST differences between plant functional and taxonomical groups

At the local scale, the UAV models unveiled a clear LST gradient from 
evergreen (avg. LST = 33.81 ◦C) to pale lichen-dominated areas, with 
pale lichens showing an average LST of 22.79 ◦C, just below 22.84 ◦C 
corresponding to B. nana. This indicates that at the UAV transect site, the 
overall surface cooling effect of pale lichen species was significantly 
higher than that of vascular vegetation, with the exception of B. nana. 
The higher LST of evergreen shrubs observed in our study can be attrib
uted to differences in albedo and the structural configuration and leaf 
architecture of common species, such as E. nigrum, Phyllodoce caerulea, 
and Calluna vulgaris. In an experimental setting, Reinhardt et al. (2022)
showed how a stepwise replacement of pale lichen species by E. nigrum 
led to a significant decrease in albedo. Moreover, Gersony et al. (2016)
showed large differences in leaf surface temperatures among arctic 
tundra plants, with E. nigrum having comparatively higher leaf 

Fig. 6. Land surface temperature (LST) measured using Landsat-8 imagery, with a spatial resolution of 30 m per pixel, aggregated over a period of 10 years 
(2013− 2023) at Jávrrešduottar (a) and Sieiddečearru (b). To facilitate visualization, Landsat images were cropped to the extent of the UAV survey areas. At the UAV 
transect site, thermal imagery was collected on 29/06/2023 with a spatial resolution of 16 cm per pixel. The border fence is shown as a dashed white line. 
Background images: ESRI Satellite World Imagery.
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temperatures. The authors attributed this to the low structural height 
and complexity, as well as the low leaf-level stomatal conductance and 
evaporative cooling of evergreen shrubs in tundra. E. nigrum thermal 
traits could also explain the increase in LST alongside increases in 
vascular vegetation fractional cover in both the local and landscape- 
scale GAMs (Figs. 4 and 7), as the vascular vegetation at our study 
sites is predominantly characterised by E. nigrum. Regarding the lower 
LST in B. nana and other deciduous, earlier studies have shown that the 
temperature of deciduous shrubs leaves is largely coupled to the tem
perature of the atmosphere, due to higher and more complex canopies 
(Lambers et al., 2008; Gersony et al., 2016). This in combination with 
higher stomatal conductance may explain the lower surface tempera
tures associated to these vascular plant groups. Although low-lying 
lichen mats are likely to not be subject to the temperature- 
homogenizing effect that eddies have on tall deciduous shrubs, their 
very high albedo (Finne et al., 2023) likely plays a key role in regulating 
LST.

At the landscape scale, we aggregated the overall vascular vegetation 
fractional cover map within the L8 pixels, thereby comparing LST be
tween dense lichen mats and vascular plant vegetation on a monthly 
(July–August) basis throughout 10 years. Mann-Whitney U tests indi
cated a significantly higher LST in pixels dominated by vascular plant 
vegetation than in those characterised by dense pale lichen mats in 
almost all summer months under analysis, highlighting the cooling ef
fect of pale lichens at the landscape scale. This observation also confirms 
the pattern observed at the local scale (Fig. 4).

Although this study highlights the benefits of combining UAV and 
satellite platforms, there are still shortcomings associated with the na
ture of UAV data collection. The representativity of single-date and 
single-time LST acquisition flights is limited, especially considering the 
sensitivity of LST readings to local weather conditions, clouds shadows, 
and other local-scale dynamics. Repeated UAV surveys at fixed temporal 
intervals over the snow-free season could provide a better overview of 
LST dynamics over lichen mats. However, in remote locations such as 
the Arctic tundra, systematic surveys are largely limited by logistic 
constraints and the rapidly changing weather conditions. To overcome 
these limitations, future research should explore the possibilities of 
spatial downscaling of satellite-derived LST observations to the spatial 
resolution of very high-resolution satellite data such as the PlanetScope 
constellations, or the High Spatial Resolution (HSR-LST) approach 
(Abunnasr and Mhawej, 2023).

The integration of high-resolution UAV and satellite remote sensing 
provides powerful tools for managing tundra ecosystems. Monitoring 
pale lichen biomass, closely linked to land surface temperature regula
tion, offers an early indicator of ecological change. Land managers can 
take advantage of these techniques to detect shifts in lichen cover and 

thermal regimes that may signal stress on the ecosystem, enabling 
adaptive management strategies and promoting ecosystem resilience.

6. Conclusions

Our study elucidated the role of pale lichen biomass in modulating 
LST dynamics in tundra ecosystems. By integrating field observations 
with a multi-scale remote sensing analysis, we provided empirical evi
dence for the cooling effect of pale lichen cover, highlighting its 
importance in shaping thermal regimes at both local and regional scales. 
In heath tundra ecosystems characterised by low-growth vegetation, 
increases in pale lichen biomass led to decreases in LST, although this 
effect is clearer at the landscape scale. Site-level landscape character
istics may also play a role in discerning LST dynamics, as the links be
tween ecosystem structure and LST may not be evident at structurally 
homogeneous sites.

The use of UAV data allowed us to accurately predict pale lichen 
biomass at a centimetre-scale, and subsequently link it with LST mea
surements. This highlights the need for UAV-derived models that are 
able to capture the heterogenous and fine-scale structure of tundra 
ecosystems. More importantly, we emphasize the effectiveness of 
combining UAV and satellite data, therefore maximizing the benefits 
from the spatial and temporal scales provided by both platforms. Further 
research focusing on the mechanistic drivers of pale lichen-LST in
teractions will enhance our understanding of tundra ecosystem dy
namics and inform effective conservation strategies in the face of climate 
change.
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Table 4 
Results of GAMs assessing the effect of nine smooth terms on L8-derived LST for Jávrrešduottar and Sieiddečearru. The model summary includes the total percentage of 
deviance explained (D2), the F statistic the relative importance of each smooth term (RI), and the partial deviance explained by each predictor (partial D2). Predictors 
are shown as GAM smooth terms. TWI: Topographic Wetness Index, TPI: Topographic Position Index. RI: Relative importance. Significant contributions of smooth 
terms are highlighted with asterisks, where * indicates significant contribution at the 0.05 level, ** indicates significant contribution at the 0.01 level, *** indicates 
significant contribution at the 0.001 level, and **** indicates significant contribution at the 0.0001 level.

Jávrrešduottar Sieiddečearru

Smooth terms F value pv RI Partial D2 (%) F value* pv RI Partial D2 (%)

s(lichen biomass) 18.84 **** 1.00 32.55 2.21 ** 0.54 4.68
s(lichen cover) – – – – 5.39 **** 0.62 15.48
s(vegetation cover) 1.06 ** 0.59 5.59 9.85 **** 0.86 7.06
s(aspect) 17.04 **** 1.00 2.16 39.04 **** 0.99 54.70
s(twi) – – – – – – 0.98 –
s(tpi) – – – – 6.31 **** 0.81 8.00
s(distance to water) – – – – 3.83 **** 3.32
s(soil cover) 2.66 *** 0.53 4.49 7.58 **** 0.95 6.76
s(elevation) 110.91 **** 1.00 55.21 – – – –
Overall deviance explained 65.8 % 26.50 %

*The F value evaluates the significance of each smooth term in the model, calculated as the ratio of the mean square of the model to the mean square of the residuals.
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Fig. 7. Generalized Additive Models (GAMs) relating 5 environmental predictors and land surface temperature. Each plot represents the partial effects of pale lichen 
biomass (a), vascular vegetation cover (b), bare soil cover (c), aspect (d), and elevation (e) on LST. The GAMs were calculated using Landsat 8 LST and UAV-derived 
smooth terms at the Jávrrešduottar study site. D2 = Partial deviance explained. RI: Relative Importance. LST: Land surface temperature.
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