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A B S T R A C T   

The fine-scale spatial heterogeneity of low-growth Arctic tundra landscapes necessitates the use of high-spatial- 
resolution remote sensing data for accurate detection of vegetation patterns. While multispectral satellite and 
aerial imaging, including the use of uncrewed aerial vehicles (UAVs), are common approaches, hyperspectral 
UAV imaging has not been thoroughly explored in these ecosystems. Here, we assess the added value of 
hyperspectral UAV imaging relative to multispectral UAV imaging in modelling plant communities in low-growth 
oroarctic tundra heaths in Saariselkä, northern Finland. We compare three different spectral compositions: 4- 
channel broadband aerial images, 5-channel broadband UAV images and 112-channel narrowband UAV im-
ages. Based on field vegetation plot data, we estimate vascular plant aboveground biomass, leaf area index, 
species richness, Shannon’s diversity index, and community composition. We use spectral and topographic in-
formation to compile 12 explanatory datasets for random forest regression and classification. 

For aboveground biomass and leaf area index, the highest R2 values were 0.60 and 0.65, respectively, and 
broadband variables were most important. In the best models for biodiversity metrics species richness and 
Shannon’s index R2 values were 0.53 and 0.46, respectively, with hyperspectral, topographic, and multispectral 
variables having high importance. For 4 floristically determined community clusters, both random forest clas-
sifications and fuzzy cluster membership regressions were conducted. Overall accuracy (OA) for classification 
was 0.67 at best, while cluster membership was estimated with an R2 of 0.29–0.53. Variable importance was 
heavily dependent on community composition, but topographic, multispectral, and hyperspectral data were all 
selected for these community composition models. Hyperspectral models generally outperformed multispectral 
ones when topographic data were excluded. With topographic data, this difference was diminished, and per-
formance improvements from added hyperspectral data were limited to 0–10 percentage point increases in R2, 
the largest occurring in the metrics with lowest R2. These results suggest that while hyperspectral can outperform 
multispectral imaging, multispectral and topographic data are mostly sufficient in practical applications in 
tundra heaths.   
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1. Introduction 

Remote sensing tools are vital in monitoring the impacts of climate 
and environmental change. In Arctic ecosystems, where amplification 
rates of global warming are up to four times the global average (Ran-
tanen et al., 2022), large-scale climate change impacts include general 
greening, but closer analysis reveals a multitude of vegetation changes 
behind this trend: shrubification, increased growth, increased leaf area, 
phenological shifts, and changes in species composition (Bjorkman 
et al., 2020; Mod and Luoto, 2016; Myers-Smith et al., 2020). Simulta-
neously, browning trends have resulted from permafrost thaw, fires, 
herbivory and erosion (Bjerke et al., 2017; Myers-Smith et al., 2020; 
Treharne et al., 2019). 

Arctic remote sensing is challenging due to vegetation characteris-
tics, geography and weather. The Arctic is characterised by treeless 
tundra of high fine-scale spatial heterogeneity (Dobbert et al., 2021; 
Reichle et al., 2018; Virtanen and Ek, 2014). This spatial diversity 
complicates measurements and models of, for instance, the carbon cycle 
in tundra (Tuovinen et al., 2019), but also remote sensing of vegetation 
properties. In spatially heterogeneous tundra landscapes, uncrewed 
aerial vehicles (UAVs) with ultra-high spatial resolution enable the 
observation of vegetation phenological changes and ecosystem pro-
cesses that are not adequately captured using satellites (Assmann et al., 
2020; Beamish et al., 2020; Danby, 2011; Poley and McDermid, 2020; 
Yang et al., 2021). Furthermore, at high latitudes, cloud cover and low 
solar angles complicate the use of satellite information (Nelson et al., 
2022). Thus, aerial – whether crewed or uncrewed – imaging is a valid 
option, even more so with the proliferation of UAVs, with established 
applications in various ecosystems (Näsi, 2021; Räsänen et al., 2020b). 
Moreover, the absence of tree cover allows for the visibility of the 
ground and field layers, and relatively low species richness reduces the 
complexity of community composition, making it possible to apply 
close-range remote sensing data in tundra ecosystems. Feasible ecolog-
ical applications include tracking vegetation change and modelling the 
spatial distribution of vegetation characteristics, such as community 
composition, leaf-area index (LAI), aboveground biomass (AGB) and 
photosynthetic capacity through biophysical traits and leaf nutrient 
content (Beamish et al., 2020; Danby, 2011; Nelson et al., 2022; Poley 
and McDermid, 2020; Räsänen and Virtanen, 2019; Yang et al., 2021). 

In the Arctic, productivity and carbon storage metrics AGB and LAI 
are the most common vegetation parameters estimated with remote 
sensing data (Bartsch et al., 2020; Bratsch et al., 2017; Chang et al., 
2022; Erlandsson et al., 2022; Halme et al., 2019; Orndahl et al., 2022; 
Pang et al., 2022; Räsänen et al., 2019a, 2020b). Vegetation structure 
properties such as plant functional type (PFT), biodiversity or commu-
nity composition are also relatively well studied (Feilhauer et al., 2021; 
Kupková et al., 2023; McPartland et al., 2019; Rapinel et al., 2018). 
While broadband multispectral imaging (MSI) tends to outperform 
hyperspectral imaging in estimating productivity metrics (Broge and 
Leblanc, 2001; Halme et al., 2019; Poley and McDermid, 2020), the 
proliferation of lightweight HSI sensors offers potential for improve-
ments in mapping vegetation diversity and composition (Fassnacht 
et al., 2022; McPartland et al., 2019). 

Close-range HSI has evolved as an intermediate method between 
satellite sensors and hand-held spectrometers but its use has also 
introduced new challenges. The continuously changing, layered, and 
overlapping mosaic of species in landscapes constrains the practical 
differentiability of vegetation patterns, and a high spatial resolution 
means that highly local and variable features such as shadows have a 
significant influence on spectral response (Adão et al., 2017; Banerjee 
et al., 2020), even more so in the Arctic where tree canopy cover is 
intermittent at best. Assmann et al. (2019) identified differences among 
sensors and sensor units, changes in ambient light (weather and position 
of sun), and spatially constraining the imagery as three main sources of 
error in UAV MSI, and these can be generalised to UAV HSI as well. 
Moreover, HSI data processing procedures differ from MSI and are 

markedly more complex, and thus more labourious and more error- 
prone (Nex et al., 2022). In principle, however, HSI should deliver 
everything MSI does and more. 

Arctic studies in close-range HSI have explored various vegetation 
and environmental properties, but results are somewhat contradictory, 
depending on the specific properties being examined. In a large-scale 
look at tundra, Nelson et al. (2022) demonstrated high spectral di-
versity over relatively small scales, indicating potential utility for HSI in 
differentiating between vegetation at close range. Liu et al. (2017) 
showed that narrowband HSI vegetation indices (VIs) slightly out-
performed broadband MSI VIs in estimating green cover in a High Arctic 
mostly mesic tundra. In alpine grassland tundra, Kupková et al. (2023) 
demonstrated high performance for estimating dominant species cover 
by both MSI and HSI at ultra-high resolutions, with no performance 
improvement from HSI. In Arctic peatlands, Räsänen et al. (2020b) 
employed 28 hyperspectral bands and reported their limited added 
value when predicting AGB, LAI, and PFTs, while McPartland et al. 
(2019) found high utility in HSI for mapping functional composition and 
species diversity. Turner et al. (2019) found that an ideal sensor for 
mapping Antarctic moss cover would be a hyperspectral sensor with 25 
visible and NIR bands. These examples demonstrate the heterogeneity of 
tundra systems and the non-universality of optimal remote sensing ap-
plications and thus the need to examine the applicability of HSI solutions 
in specific contexts. Thus, here, we examine the potential of HSI to 
improve the predictability of shrub heath tundra vegetation community 
properties – in particular, productivity metrics AGB and LAI, biodiver-
sity metrics and community composition – relative to broadband MSI 
acquired with UAVs. 

Globally, research has indicated that broadband VIs that utilize near- 
infrared (NIR, 700–1300 nm) reflectance (Huete, 2012) are closely 
correlated with AGB and LAI (Cunliffe et al., 2022; Sundqvist et al., 
2020). Indeed, HSI has typically not been found to add value to pro-
ductivity estimation (Broge and Leblanc, 2001; Halme et al., 2019). 
However, the NIR VI–productivity relationship has been disputed in the 
tundra, where the degrees of correlations depend on the specific plant 
composition (Cunliffe et al., 2020; Räsänen et al., 2021b). Instead of 
using spectral data, some studies have modelled canopy height and 
structure to estimate productivity parameters. For example, Cunliffe 
et al. (2020) reported that canopy height models (CHMs) have signifi-
cantly higher predictive capability of AGB than spectral VIs in shrub 
tundra, a result echoed by Villoslada et al. (2023). 

Regarding biodiversity, studies outside the Arctic (Madonsela et al., 
2017; McPartland et al., 2019; Palmer et al., 2002; Rocchini et al., 2010) 
have suggested that spectral diversity correlates with species diversity, 
though the validity of this spectral diversity hypothesis has been ques-
tioned (Fassnacht et al., 2022; Wang and Gamon, 2019). Nonetheless, 
there has been little research in the Arctic landscapes regarding the 
estimation of biodiversity from spectral properties. 

Finally, characterizing terrestrial vegetation community composi-
tion is also a common remote sensing task. In principle and in some 
demonstrations, HSI can improve the estimation of vegetation compo-
sion (e.g., McPartland et al., 2019), which is also strongly dependent on 
topography (Haapasaari, 1988; Oksanen and Virtanen, 1995). Topog-
raphy, ranging from elevation to micro- and macro-topographic fea-
tures, is indeed often an important factor in successful remote-sensing- 
based vegetation mapping (Dobbert et al., 2021; Mekonnen et al., 
2021; Villoslada et al., 2023). While discrete differentiation between 
vegetation types is typical both in characterization of plant communities 
(Haapasaari, 1988; Oksanen and Virtanen, 1995; Pääkkö et al., 2018) 
and in land cover mapping (Ju et al., 2005), there are intuitive and 
empirical reasons for the use of fuzzy classification and gradient map-
ping, particularly in species-poor environments (Feilhauer et al., 2021; 
Rapinel et al., 2018; Räsänen et al., 2020a; van der Merwe et al., 2023). 
Fuzzy classifications more accurately reflect the reality of plant distri-
butions and can be readily used to create crisp classes if necessary. At the 
same time, the relationship between fuzzy classes and floristic gradients 
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on one hand, and spectral properties on the other, can be difficult to 
generalise due to its strong dependence on the specific classification and 
determination of those gradients. For example, the use of ordination 
axes in gradient mapping (Feilhauer et al., 2021; Räsänen et al., 2020a) 
makes more sense the more those ordination axes correspond to iden-
tifiable ecological properties such as moisture and nutrient availability. 

Overall, understanding of the applicability and advantages of UAV 
HSI to detect Arctic tundra vegetation characteristics remains limited. 
To address this gap, we ask: (1) How does HSI impact the predictability 
of plant community attributes relative to MSI? (2) How does the 
importance of different kinds – topographic, MSI, and HSI – of explan-
atory data change when modelling different responses? Increased 
spectral information from HSI can enable better differentiation between 
taxa and thus better estimation of vegetation composition and diversity 
than MSI. However, the importance of NIR and vegetation structure for 
productivity estimation suggests that HSI may not provide benefits in 
this area. Thus, we hypothesise that hyperspectral data improve the 
predictabilities of tundra plant community composition and diversity 
attributes (species richness and Shannon’s index), but not productivity 
metrics (AGB and LAI). We expect topographic data to be particularly 
important for community composition, MSI to be most important for 
productivity and HSI to be important for both composition and diversity. 

2. Materials and methods 

We used various aerial remote sensing data, including 4-band crewed 
aerial MSI, 5-band UAV MSI, and 112-band UAV HSI, and an aerial lidar- 
derived digital elevation model (DEM) to predict vascular plant pro-
ductivity (AGB, LAI), biodiversity (species richness, Shannon’s diversity 
index; Shannon, 1948), and fuzzy and discrete plant community cluster 
membership in an oroarctic tundra landscape in northern Finland. We 

combined the remote sensing data into 12 explanatory datasets to pre-
dict field-observation-based vegetation characteristics using random 
forest models (Fig. 1). 

2.1. Research site 

The research site is located on the north and east faces of Niilanpää 
fell in the Saariselkä fell range in the Urho Kekkonen National Park in 
northern Finland (68.34◦ N, 27.55◦ E; 335–485 m a.s.l.; Fig. 2). The 
landscape is mostly dry shrub tundra heath (characterised by evergreen 
shrubs such as Empetrum nigrum ssp. hermaphroditum), with occasional 
more moist areas (characterised by deciduous shrubs such as Vaccinium 
myrtillus) and blockfields devoid of vegetation other than crustose li-
chens. Towards the lower range of elevations, the landscape gradually 
turns into a sparse treeline forest, with occasional Scots pines (Pinus 
sylvestris) and local variants of mountain birch (Betula pubescens ssp. 
czerepanovii var. appress), which grow as tall shrubs or small trees. 

2.2. Field data 

Field data were collected in summers 2020 and 2022 by sampling 
n = 202 0.5 × 0.5 m vegetation plots (Fig. 2). Field surveys were timed 
to correspond approximately to the peak of the growing season from 
mid-July to early August. In 2020, n = 108 plots were randomly placed 
around three areas within the study site and surveyed Aug 3–7. In 2022, 
n = 70 plot locations were chosen by randomly selecting locations from 
a grid of regularly placed points in the research area and surveyed Jul 
18–21. In addition, in 2022, n = 24 plots were surveyed Aug 1–4 around 
three relatively lush vegetation areas at the south end of the study site 
due to the experimental setup of another study. Field data from 2020 
and 2022 were combined into a single response dataset, as interannual 

Fig. 1. Data inputs and processing steps of the models for plant community property prediction. DEM: digital elevation model; MSI: multispectral imaging; UAV: 
uncrewed aerial vehicle; HSI: hyperspectral imaging; RS: remote sensing. 
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variability in these evergreen-perennial-dominated shrublands is small 
(Pääkkö et al., 2018). 

Vegetation plots were aligned cardinally using a compass. Plots were 
photographed (Fig. 3) for later reference and the location of each plot 
was recorded using a Trimble R10 (Trimble, Westminster, CO, USA) 
GNSS RTK receiver (horizontal precision for all points < 2 cm). For each 
plot, vascular plant, moss, and lichen species were identified, their 
%-cover was visually estimated, and the mean height of vascular plants 
was measured with a ruler. Bryophytes and lichens were not consistently 
identified to species level and were later grouped into three categories: 
bryophytes, reindeer lichens, and other lichens. To ensure consistency, 
part of the field surveyers were present both in the 2020 and 2022 
campaigns. 

From %-cover and height information, vascular plant AGB and LAI 
were estimated using regression equations by plant functional type 
(PFT; Table 1). This approach, which has been employed in similar 
lanscapes previously (Räsänen et al., 2019a, 2020b, 2021b) and has the 
benefit of reducing the amount of field work required, but as any 
regression model, underestimates the true variance in AGB and LAI 
patterns. For this study, we curated a selection of field samples from 
three previous field campaigns in treeless environments in Northern 
Finland and selected the best-performing linear regression models, 
based on root-mean-square error. For many of the PFTs, AGB and LAI 
estimates relied solely on %-cover information, likely due to the ho-
mogenous low height of vegetation. While this means that AGB and LAI 
estimates are close to being linear combinations of %-cover information, 
they are preferable metrics from an ecological mapping point of view, as 
they have direct relevance to, for example, the carbon cycle (Turner 
et al., 2004). Bryophytes and lichens were excluded from these esti-
mations due to their relatively low visibility below other vegetation 
layers and low prediction accuracy in regression models (Räsänen et al., 
2020b). 

Vascular plant biodiversity was quantified using species richness S 
and Shannon’s diversity index H (Shannon, 1948). S (i.e., the number of 
vascular plant species present in each plot) was directly extracted from 
field observations, and H was calculated as: 

H = −
∑

piln(pi),

where 

pi =
Ci

Ct
,

where Ci and Ct were species coverage and total coverage in the plot, 
respectively. 

Vegetation was also divided into fuzzy community clusters in an 
unsupervised process by: 1) non-metric multidimensional scaling into 
four floristic gradients based on Bray-Curtis dissimilarity using the 
vegan package in R (Bray and Curtis, 1957; Minchin, 1987; Oksanen 
et al., 2022; R Core Team, 2021); and 2) fuzzy k-medoids with noise 
clustering using the fclust package (Ferraro Brigida et al., 2019). The 
number of clusters k was determined based on cluster validity indices for 
2–10 clusters and by qualitatively examining the species composition in 
each cluster and assessing whether the results corresponded with field 
experiences. The result of fuzzy clustering for each resulting cluster was 
a cluster membership value (μk ∈ [0, 1], where 

∑4
k=1μk = 1), as well as a 

discrete cluster assignment, based on highest membership value. Intui-
tively, fuzzy clustering corresponds more closely to real plant commu-
nities than discrete clustering since clusters can co-occur, in addition to 
which it has been found to improve mapping accuracy (Feilhauer et al., 
2021; Rapinel et al., 2018). 

2.3. Remote sensing data 

Remote sensing data consisted of spectral and elevation data pro-
duced by the National Land Survey of Finland (NLS) and data collected 
with UAVs. Spectral data were divided into three categories: 1) 4-band 
moderate-altitude aerial orthophotos, which are available across 
Finland, produced by the NLS; 2) 5-band UAV MSI; and 3) 112-band 
UAV HSI. Additionally, elevation data from the NLS (lidar-based raster 
with 2 m resolution, measured for the study area on June 28, 2011) were 
used. 

Fig. 2. A map showing the location of the study site (A), the distribution of vegetation plots and the extent of UAV imagery (B) and a landscape photo of the area (C; 
July 14, 2019; courtesy of T.V.). Plot sizes are not to scale. Orthophoto and topographic map are from the National Land Survey of Finland. 
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NLS imagery included red, green, blue and NIR bands and had a pixel 
size of 0.5× 0.5 m2. The most recent images for the studied area were 
taken on July 23, 2016. The NLS produces 4-band orthophotos across 
Finland at regular intervals and we used the most recent imagery for our 
site. The sensor, imaging, and processing details are not published 
(National Land Survey of Finland, n.d). Although these kinds of images 
are processed for visual interpretation, not reflectance measurement, 
they have been found to have validity in index-based computational 
productivity assessment (Erlandsson et al., 2019). 

UAV multispectral imaging (MSI) was conducted in 2020 (August 3) 
and 2022 (July 21), using the MicaSense RedEdge-M and MicaSense 
RedEdge-MX sensors (AgEagle Aerial Systems Inc., Wichita, KS, USA), 
respectively. MSI consisted of 5 bands: blue, green, red, red edge and 
near infrared with the same central wavelengths but slightly different 
bandwidths (Table 2). Radiometric calibration for MSI was undertaken 
using a Micasense Calibrated Reflectance Panel with known reflectance 
(blue = 46.97%, green = 47.18%, red = 47.21%, red edge = 47.20%. 
NIR = 47.12%). Before and after each flight, an image of the reflectance 
panel was taken. Further, a Downwelling Light Sensor (DLS 2) placed on 
top of the UAV was used to record sun irradiance and sun angle for each 

of the five bands. The information from the calibration panel and the 
DLS2 sensor was used in Agisoft Metashape 1.7.2. (Agisoft LLC, St. 
Petersburg, Russia) to radiometrically correct the multispectral mosaics 
and account for variations in light conditions during the flights. In 2020, 
flight altitude was constant above takeoff, leading to real altitudes of ca. 
60–200 m and ground sampling distances (GSDs) of 5–13 cm, while in 
2022, altitude was constantly 100 m above terrain, with GSD 7 cm. We 
assumed that differences in GSD did not significantly impact the per-
formance of these datasets, as spectral data were sampled at plots mainly 
as means and differences resulting from UAV imaging GSD have been 
found to be small (Steenvoorden et al., 2023). Georeferencing was 
conducted using ground control points and real-time kinematic posi-
tioning on-board UAVs, and final horizontal accuracy of mosaics was 
≤ 5 cm. 

UAV hyperspectral images (HSI) were collected on July 21, 2022 
using a Specim AFX10 sensor (Specim, Spectral Imaging Ltd., Oulu, 
Finland). GSD ranged ca. 10–19 cm due to constant flying altitude above 
sea level and varying terrain elevation above sea level. The spectral 
range of the sensor was 400–1000 nm with a 5.5 nm spectral resolution. 
Spectral binning was set to 4 to produce 112-band images, so that the 

Fig. 3. Images of four vegetation plots, showing different vegetation in the study area and the dominant species. The plots represent A) a moist site, with Vaccinium 
uliginosum and graminoid species (Aug 4, 2020); B) a dry, Calluna vulgaris-dominated rocky site (Jul 19, 2022); C) a relatively moist and nutrient-rich site, with 
relatively tall specimen of Vaccinium myrtillus and lush Empetrum nigrum ssp. hermaphroditum (Jul 19, 2022); D) a somewhat dry site, characterised by Betula nana and 
Arctous alpina (Jul 19, 2022). 
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difference between central wavelengths was 5.4 nm, close to the spectral 
resolution. Binning also reduced data load and processing times and 
improved signal-to-noise ratio. In order to compare sensor performance 
and in addition, HSI was spectrally resampled to correspond to RedEdge- 
MX bands (Table 2), assuming a Gaussian response. Resampling was 
performed using the spectralResampling function of the hsdar 
package in R (Lehnert et al., 2019). 

For HSI, 3 radiometric calibration panels (0.5× 0.5m2, reflectance 2, 
9, and 46%; Altisense Ltd., Pori, Finland) were placed in the landscape. 
Reflectance conversion was conducted with the empirical line calibra-
tion method (Fig. 4). 

Image data were sampled at each field observation plot using the 
exact_extract function of the exactextractr package (Daniel 
Baston, 2023) in R. Both means and variances were extracted for each 
MSI and HSI band but only means for NLS airborne data, since the 0.5 m 
resolution corresponded with the plot size. Variances represented 
spectral variability in each plot to test their usefulness particularly in 
predicting biodiversity metrics. Additionally, seven spectral indices 
were calculated for NLS images, eight for MSI and spectrally resampled 
HSI, and 100 for HSI to reduce the complexity of multidimensional 
reflectance information (full descriptions and references for indices are 
available in Supplementary Information SI 1). For HSI, first derivatives 
were calculated. For MSI and spectrally resampled HSI, a limited num-
ber of common indices were chosen while, in contrast, all applicable 
vegetation and soil indices available in hsdar were computed for HSI. 
Thus, the number of explanatory variables computed from MSI was 18 
while it was 435 from HSI. From the elevation model, topographic 

position indices (TPI) with neighbourhood distances of 5, 10, 20, 50, and 
100 m (Guisan et al., 1999) and the topographic wetness index (TWI; 
Böhner and Selige, 2006) were calculated using SAGA-GIS (Conrad 
et al., 2015). 

2.4. Statistical modelling 

Before model building, field and remote sensing data from different 
years were evaluated for compatibility based on seasonality as measured 
by accumulated thermal units (ATUs) and precipitation and by cross- 
modelling some responses (SI 5). Based on these results and our 
experience-based understanding and earlier evidence of small interan-
nual variability in our study site (Pääkkö et al., 2018), the field and 
remote sensing data were modelled together. 

To assess differences in the explanatory power of MSI and HSI, as 
well as the importance of topographic information, remote sensing data 
were compiled into 12 different explanatory datasets: 1) elevation data 
and derived topographic indices only (T); 2) NLS 4-band multispectral 
and topographic data (NLS); 3) multispectral data from 2020 (M20); 4) 
M20 with topographic data (M20T); 5) multispectral data from 2022 
(M22); 6) M22 with topographic data (M22T); 7) two-year multi-
temporal multispectral data and topographic data (MMT); 8) hyper-
spectral data (HS); 9) HS and topographic data (HST); 10) hyperspectral 
data spectrally resampled to match MSI data (HM); 11) HM and topo-
graphic data (HMT); and 12) all original spectral and topographic data 
(All) (Table 3 for details). Datasets were compiled based on spectral and 
spatial resolution and the inclusion of topographic data, as well as cases, 

Table 1 
Equations used for estimating aboveground biomass (AGB, gm− 2) and leaf area 
index (LAI) for different functional groups of tundra plants. C refers to %-cover 
and H to height. Tested explanatory variable combinations were {C}, {CH} and 
{C,H} and equations were determined following methodology outlined by 
Räsänen et al. (2019a) on data from Finnish sites in Kaamanen (Kou et al., 2022), 
Pallas (Räsänen et al., 2021a) and Sodankylä (Räsänen et al., 2020b).  

Plant functional 
type (PFT) 

n Metric Equation R2 RMSE 

Evergreen dwarf 
shrubs 

103 AGB 4.2732+ 2.75C 0.68 36.99 
LAI 0.0202169+

0.0087463C 
0.74 0.10 

Deciduous dwarf 
shrubs 

46 AGB 1.8423+ 2.4306C+

1.4118H 
0.84 20.91 

LAI − 0.020214+

0.0193134C 
0.76 0.17 

Betula nana 45 AGB 2.209027+

0.160556CH 
0.73 37.98 

LAI 0.0047927+

0.0077365C 
0.59 0.06 

Forbs & 
pteridophytes 

73 AGB − 0.392171+

0.083511CH 
0.63 15.21 

LAI − 0.01987+

0.001125CH 
0.78 0.14 

Graminoids 105 AGB − 1.4051+ 0.6973+

1.0906 
0.44 24.28 

LAI − 0.015802C+

0.00585C+ 0.006981H 
0.44 0.17  

Table 2 
MicaSense RedEdge-M and RedEdge-MX band centers and bandwidths (Mica-
Sense, 2020).  

Band Center 
(nm) 

RedEdge-M bandwidth 
(nm) 

RedEdge-MX bandwidth 
(nm) 

Blue 475 20 32 
Green 560 20 27 
Red 668 10 16 
Red edge 717 10 12 
Near 

infrared 
842 40 57  

Fig. 4. Hyperspectral reflectance spectra at calibration panels (2–46%) and a 
typical E.-hermaphroditum-dominated spot in the scene. Spectra were obtained 
by weighted averaging over small (< 0.2m2) hand-drawn areas at 
selected locations. 

Table 3 
Explanatory datasets based on remote sensing. Dataset names beginning with M 
are UAV MSI, while those beginning with H are UAV HSI, and those with HM are 
HSI data spectrally resampled to correspond to MSI. T signifies that topographic 
data was included, and NLS is the National Land Survey of Finland, who pro-
duced crewed aerial orthophotos.  

Name Imaging year(s) NLS MSI HSI HM T 

T – – – – – ×

NLS 2016 × – – – ×

M20 2020 – × – – – 
M20T 2020 – × – – ×

M22 2022 – × – – – 
M22T 2022 – × – – ×

MMT ’20, ‘22 – × – – ×

HS 2022 – – × – – 
HST 2022 – – × – ×

HM 2022 – – – × – 
HMT 2022 – – – × ×

All ′16, ′20, ′22 × × × × ×
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where data availability was limited to one type of sensor or publicly 
available data. Data were also combined in datasets MMT and All to 
assess possible benefits from multitemporal data and fusion between 
MSI and HSI. 

Ecological metrics1 (AGB, LAI, vascular plant species richness, 
Shannon’s diversity index for vascular plants, and community cluster 
classification and membership) were estimated from these datasets 
using random forest machine learning models (Breiman, 2001). Random 
forests are considered resistant to overfitting (Breiman, 2001) and their 
use in remote-sensing ecology is well-established (e.g., Hall and Lara, 
2022; Räsänen et al., 2020a; Turner et al., 2019). Due to the large 
number of derived variables, such as topographic and spectral indices, 
there was high redundancy in our datasets. Thus, the number of 
explanatory variables was reduced using VSURF (Genuer et al., 2015), a 
random-forest-based variable selection algorithm. The algorithm works 
by: 1) ranking variables by importance and eliminating irrelevant var-
iables; 2) building a sequence of models with the most important, two 
most important, etc. variables and selecting those that construct the best 
model; and 3) testing different combinations of variables and choosing 
the least erroneous combination (Genuer et al., 2015). Since random 
forests employ stochastic processes, results for variable selection vary on 
different executions of the algorithm. Therefore, the final variable se-
lection was based on 10 executions of the VSURF algorithm. While this 
approach is counterintuitive with regards to the redundancy-reducing 
process of VSURF, it was found in preliminary modelling runs to pro-
vide the best performance (SI 2). 

In the final random forest models after VSURF, the random forest 
parameter mtry, which determines the number of variables randomly 
selected for testing the split at each node of the decision trees, was tuned 
using the tuneRF function in the randomForest package (Liaw and 
Wiener, 2002). The function first tries 

̅̅̅
n

√
variables, where n is the total 

number of variables in the model, and then iteratively increases and 
decreases this number, stopping in each direction when errors increase. 
Such a parameter value was chosen that yielded the minimum mean 
square error. Next, 100 random forests were built for each dataset and 
they were evaluated using mean values of the out-of-bag estimate of the 
percentage of variance explained (R2, R2 = 1 − mse

Var(y), where y is the 
response) and range-normalised root-mean-square error (nRMSE) for 
regression models, and using overall accuracy (OA), fuzzy overall ac-
curacy (fOA) and both hard and fuzzy confusion matrices (Binaghi et al., 
1999) for classification models. Instead of separating the data for cross- 
validation, out-of-bag model metrics were used as these have been found 
to be valid and even conservative estimates of model performance (Clark 
et al., 2010). Fuzzy confusion matrix X values were defined as xi,j =
∑nc

i=1
∑nc

j=1
(
mj|ct = i

)
, where i and j are rows and columns, respectively, 

nc is the number of clusters, m is the membership value or vote share for 
regression and classification, respectively, and ct is the “true” cluster for 
each plot. 

The relative importance of variables was evaluated using an 
expression of increase in root-mean-square error (relative to the 
response mean) if the variable in question was randomly permuted. 
Importance values were retrieved from a final random forest built using 
chosen variables for each predictor-response combination. Finally, 
models built with dataset All were used to predict plant community 
characteristics across the entire imaged area, and models built with 
datasets M22T and HST were used to predict productivity and diversity 
metrics for direct comparison between MSI and HSI. For prediction, 
image and topographic data were resampled to a 0.5 × 0.5 m resolu-
tion. This was necessary to calculate comparable spectral variance to the 
training data, in addition to which it reduced computational costs in 
prediction significantly and corresponded to the size of vegetation plots. 

3. Results 

3.1. Plant community properties 

A total of 37 vascular plant species were identified, along with 26 
bryophyte taxa and 30 lichen taxa. The most common species were 
Empetrum nigrum ssp. hermaphroditum, Vaccinium vitis-idaea, V. myrtillus, 
Betula nana, and Calluna vulgaris, of which all but V. vitis-idaea were 
dominant species in their respective communities (Table 4). V. vitis-idaea 
occurred almost universally but as very small individual plants (mean 
height 3.3 cm and mean %-cover 3.4% of a vegetation plot). Quantita-
tive descriptions of the species (SI 3) showed how some 
(E. hermaphroditum and V. vitis-idaea) were universally present, while 
others (B. nana, C. vulgaris, V. uliginosum, and B. pubescens in particular) 
appeared only occasionally but had relatively high abundance when 
they did. Mean vegetation height across all plots was 6 cm. 

Based on non-metric multidimensional scaling and fuzzy clustering, 
four plant community clusters were defined (Table 4; Fig. S.1). In a 
qualitative assessment of the discretised clusters, 1 and 2 were wetter, 
containing more bryophytes as well as graminoids and V. uliginosum and 
myrtillus. Meanwhile, clusters 3 and 4 encompassed more plots, and 
were characterised by E. nigrum and lichens, and C. vulgaris, respec-
tively. Discretised clusters were also differentiated to varying extents by 
AGB, LAI, and biodiversity metrics. These properties were quite nor-
mally distributed overall, with variation across the clusters (Fig. 5). 
Clusters 2 and 3 had distinctly high and low biodiversity, respectively, 
while 1 and 4 had similar medium biodiversity values. AGB and LAI 
were the lowest in cluster 3 and the highest in cluster 4. In other re-
spects, the clusters were less differentiable. The fuzzy nature of clus-
tering blurred lines between the different clusters, not just in terms of 
cluster membership but other characteristics as well. 

3.2. Remote sensing models 

Model performance varied greatly across responses (R2 0.29–0.65 for 
the best-performing dataset All) and across datasets (R2 0.00–0.65 for 
the best-performing response LAI; Table 5). Best performing data were 
generally – with exceptions – fusions of multiple image and topographic 
data. Generally, topographic data increased performance more for MSI 
than for HSI, and without topographic data HSI outperformed MSI for 
almost all metrics, and with topographic data performance was, on the 
whole, approximately equal. Multitemporality slightly improved MSI 
performance (dataset MMT), especially for biodiversity metrics. Vari-
able selection results agreed with these results (Table 6 for fusion dataset 
All, SI 2 for others), showing that MSI, HSI and topographic data were all 
important for some responses, though the relationship between predic-
tor and response varied from seemingly linear to more complex (SI 7). 

Better performing models exhibited less noise and their regression 
line slopes were closer to 1 in the predicted-observed plots (Fig. 6 for 
dataset All, SI 8 for others). These plots also show that cluster mem-
bership models are generally more noisy than productivity or biodi-
versity models, as shown in generally larger error values. 

3.2.1. AGB and LAI 
The best regression model performance was achieved for LAI with 

dataset All, yielding R2 0.65 and nRMSE 0.09 (Table 5). For productivity 
metrics AGB and LAI, all MSI and HSI datasets performed similarly 
(R2 > 0.5), with the exception of spectrally resampled HSI, which 
underperformed relative to MSI. There was only a limited benefit from 
the inclusion of topographic data, and limited or no benefits from 
multitemporal or multisensor data fusion. Topographic data alone per-
formed poorly (R2 ≤ 0.14), as did lower-spatial-resolution aerial MSI 
(R2 ≤ 0.22). Model performances were echoed in variable selection re-
sults (Table 6). 

1 On vocabulary: we describe response variables as metrics and explanatory 
variables as variables for clarity. 
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3.2.2. Biodiversity metrics 
Biodiversity metrics S and H were both best estimated with multi-

temporal MSI and topographic data (R2 0.53 and 0.46, respectively). 
One-off MSI and HSI performed similarly, though again spectrally 
resampled datasets HM and HMT underperformed, though only slightly 
for S. Topographic data were important, boosting R2 values by 
0.03–0.26. Notably, topographic data provided the smallest boost for 
HSI, and HS was the best-performing dataset without topographic data 
(R2 0.46 and 0.36, respectively). 

3.2.3. Cluster membership and classification 
Community cluster classification and membership regression models 

had mixed results (for a comparison of community cluster classification 
and cluster membership regression, see SI 9). For C1 membership, HSI 
provided the largest boost in model performance with R2 0.1 greater 
than the best-performing MSI dataset, but model performance was 
overall very low, peaking at 0.29 for datasets HST and All. For C2 and 
C3, fusion datasets performed best, and performance was better 
throughout than for C1. HST performed best for C4. For all cluster 
membership regression models, topographic information boosted R2 by 
0.02–0.35, and topography-only models often outperformed pure 
spectral models, particularly MSI models. HS was universally the best- 
performing topography-exclusive model. In classification models, 
fusion datasets performed best, with maximum overall accuracy 0.67, 

though maximum fuzzy OA was only 0.53. 
Classification performance was further evaluated with hard and 

fuzzy confusion matrices (Tables 7–8, SI 10). In the fuzzy confusion 
matrix, the numbers represent the summed proportion of votes in the 
random forest given to each observed class. Especially fuzzy classifica-
tion accuracy was poor (<0.4) for clusters 1 and 2, while clusters 3 and 4 
were better predicted. The fuzzy confusion matrix reveals, for example, 
that plots in cluster 3 were often given high membership in C1, which 
was the main cause of low user’s accuracy for C1. 

3.3. Prediction maps 

In the vegetation characteristic maps constructed with dataset All 
(Fig. 7), AGB and LAI showed the largest spatial variance and were 
closely positively correlated (Pearson correlation coefficient PCC 0.91, 
Table 9). S and H had less spatial variance and also clearly correlated 
with each other (PCC 0.66). Regarding community clusters, the best- 
predicted cluster C3 dominated the study site, with gaps being filled 
by C1 and C4. The maps of the wettest clusters C1 and C2 correlated with 
the productivity and biodiversity metric maps, as did the Calluna- 
dominated cluster 4 maps. Regression- and classification-based cluster 
maps had clear differences: less pixels were classified into cluster 2 in the 
classification map and more to cluster 4; classifier voting maps showed 
the benefits of classifier-based fuzzy membership by exhibiting greater 

Table 4 
Properties of plant community clusters as defined when plots were assigned to clusters for which they had the highest membership value. By a qualitative assessment of 
clustering, cluster 1 corresponded to the most moist and lush areas in the landscape, and cluster 2 was somewhat drier. Cluster 3 was the most common, and included 
the most commonly occurring species, Empetrum nigrum ssp. hermaphroditum and Vaccinium vitis-idaea. Cluster 4 was quite clearly demarcated by Calluna vulgaris, which 
was consistent with field observations. AGB: aboveground biomass; LAI: leaf area index; S: species richness; H: Shannon’s diversity index. AGB, LAI, H and height are 
reported with standard deviation.  

ID Indicators Plots Mean AGB (g) Mean LAI Median S Mean H Mean height (cm) 

1 V. uliginosum, bryophytes 40 180 ± 83 0.82 ± 0.43 6 1.14 ± 0.34 6 ± 5 
2 V. myrtillus, A. flexuosa, B. nana 32 170 ± 57 0.75 ± 0.28 8 1.56 ± 0.25 6 ± 3 
3 Lichens, reindeer lichens, E. hermaphroditum, V. vitis-idaea 77 153 ± 81 0.66 ± 0.41 4 0.83 ± 0.31 5 ± 6 
4 C. vulgaris 53 216 ± 58 0.88 ± 0.29 6 1.14 ± 0.35 6 ± 4  

Fig. 5. Aboveground biomass (AGB), leaf area index (LAI), vascular plant species richness (S), and Shannon’s diversity index (H) distributions across plots. On the 
bottom row are all plots, and on four other rows, those plots most likely to belong to each of four community clusters. AGB and LAI are determined according to 
models detailed in Table 1. Clusters 1–4 are described in Table 4. 
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variance and contrast relative regression membership; and the classifier 
maps were less “noisy” in the sense of containing larger homogenous 
areas. However, though these maps were neater, there was no evidence 
that they corresponded more accurately with the vegetation on ground – 
indeed, for estimating the floristically determined cluster membership, 
regression models outperformed classification vote shares (Tables 5, 
S.18). In the maps for C2 and AGB, there were some no-data pixels, 
which were caused by a bug producing no-data values in the calculation 
of the modified red edge inflection point (mREIP) raster from HSI. Since 
no-data values were only present in the mREIP map of the entire area, 
and not in training data, this issue was deemed aesthetic and ignored. 

When comparing maps produced by MSI and HSI (topographic data 
included; Fig. 8), differences between predicted AGB and LAI were 
small, though MSI exhibited more variance through higher highs and 
lower lows, whereas more pronounced differences can be seen in S and H 
maps. In particular, the M22T species richness map (selected variables 
Ratio22, DEM and TPI-50) showed large dependence on elevation, 
which rises towards the south-west corner in these maps, an effect which 
was likely overfitted, since the relationship between elevation and 
species richness in this site was non-obvious (Fig. S.4). The HST species 
richness model had more explanatory variables than M22T species 
richness models; therefore, though elevation was included as a predictor 
in the HST model, the model was more robust for species richness and 
the elevation effect could not be seen. Even so, model performance 
metrics were the same for species richness for M22T and HST. For 
Shannon’s index, the M22T map again showed greater variance, though 
model performance was 2 pp. better for HST. 

4. Discussion 

Based on our results, HSI improves the predictability of some tundra 
plant community characteristics relative to MSI. However, when topo-
graphic data are included, there is little difference in the performance 
between HSI- and MSI-based models. An exception in this trend are 
community cluster membership regressions for clusters 1, 2 and 4, 
where HSI and topography models have 10, 2 and 2 percentage points 
(pp) higher R2, respectively, and 1 pp. lower nRMSE than MSI and 
topography models. Further, fusion models – combining HSI with mul-
titemporal MSI and topographic data – boost R2 for LAI, C2 and C3 by 2, 
4 and 3 pp., respectively. While topographic data close much of the 
performance gap between MSI and HSI, this does not mean that spectral 
data can be replaced by topographic data, because topographic and 
spectral data provide very different information about the landscape. 
Our results indicate that the choice of imaging system and plan should 
depend on the modelled plant community property; while MSI is better 
for productivity estimation, HSI brings some improvements for pre-
dicting composition. Our results also suggest some benefits from 
including multitemporal data in estimating vegetation diversity. 

In prediction maps based on random forests, spatial variation of 
response metrics is underrepresented, which can be seen in regression 
lines in observed–predicted plots (Fig. 6, SI 8). As a result, predicted 
metrics tend towards the mean and outliers of, for example, high or low 
AGB are not represented. At landscape scale, the loss of extreme values 
has no effect on calculated means or sums, and in maps produced by 
better-defined models exhibit more spatial variation (e.g. AGB and LAI 
maps produced by MSI vs HSI in Fig. 8). 

Across responses and datasets, our results are slightly limited by 
spatial uncertainty and temporal mismatches. While georeferencing 
precision for our data was high (<5 cm), polygon representations of field 
plots did not exactly match surveyed plots. These issues are limitations 
of the technology at our disposal, but their effects on our results were 
likely small, as vegetation plots were not placed at stark borders be-
tween vegetation types. Moreover, while we used two MSI datasets from 
different years, we only had HSI for one year. Thus, the potential ben-
efits of multiannual HSI were unexplored. In addition, MSI results 
showed that performance can vary with the same sensors (e.g. S R2 0.39 Ta
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and 0.23 for M20 and M22, respectively), so it is feasible that an HSI 
dataset acquired at another point in time would have performed slightly 
differently. In the following subsections, we discuss our results in more 
detail and in light of previous research for our three categories of 
response metrics – productivity, biodiversity and community composi-
tion – separately, and then address both the limited benefits found in HSI 

generally and methodological limitations. 

4.1. AGB and LAI 

Previous studies have found that the accuracy of high-spatial reso-
lution AGB and LAI predictions in low-growth landscapes varies 

Table 6 
For each response metric, the results of 10 iterations of VSURF variable selection and importance values. Selected variables are listed in order of decreasing importance, 
which is expressed, for regression models, as percentage increase in MSE, if that variable is randomly permuted, normalised by the standard deviation of the difference 
between MSE with and without permuting. For classification, importance is mean decrease in accuracy. Spectral indices are explained and referenced in SI 1. Variable 
names are suffixed by NLS, 20 or 22 for National Land Survey, multispectral 2020 and multispectral 2022 images, respectively, “var” for band variance. Hyperspectral 
bands are named by their central wavelength prefixed by “HS”, and first derivatives are suffixed by “D”. Topographic data are digital elevation model (DEM), 
topographic wetness index (TWI) and topographic position indices (TPIs).  

AGB LAI S H C1 C2 C3 C4 Class 

Variable % Variable % Variable % Variable % Variable % Variable % Variable % Variable % Variable % 

DEM 28 Ratio22 25 TPI-50 25 RE22var 25 HS1000 30 green20 22 green20 44 DEM 57 DEM 50 
blue20 27 NDVI22 24 HS454D 22 TWI 22 HS984 29 greenNLS 19 DEM 34 RE20 38 green20 43 
red22 27 RGI22 21 HS973D 20 DEM 21 HS984D 25 D1 18 HS903D 29 PRI_norm 36 HS454D 42 
red20 26 blue22 21 HS978D 20 HS903D 19 SR8 23 RI 16 NDRE22 27 green20 32 TWI 32 
NDVI22 25 red22 20 DEM 18 TPI-50 18 TPI-10 22 PRI_norm 15 PRI_norm 26   TPI-50 31 
Ratio22 25 Ratio20 19 green20 17 SR3 18 HS708D 20 OSAVI2 15 HS454D 23   RE20 29 
blue22 24 green22 18 HS935var 16 HS973D 18   NDRE20 15 HS978D 21     
Carter 23 NDVI20 18 blueNLS 15 SI_TM 18   HS735D 15 NIRNLS 21     
RGI20 23 RGI20 17 CRI2 15 GMI1 17   MTCI 14 D1 19     
RGI22 21 NDRE22 17 greenNLS 14 Datt3 17   HS405 14       
mREIP 21 HS400 16 Datt3 13 HS735D 15   HS903D 14       
red22var 17 RatioNLS 14 TPI-20 13 HS978D 14   MCARI2 13         

nir22var 13 SI_TM 12     HS941D 13         
NPCI 12 redNLS 11     MCARI2/ 

OSAVI2 
13         

green20 12 blue20 11     RI_TM 13         
SRPI 12 SR8 7     HS411 13         
PRI_norm 10       mREIP 13         
RE20var 5       TPI-20 12                 

DD 12                 
mSR705 12                 
CI 10        

Fig. 6. Relationships between observed and predicted values for regression models built with dataset All. Linear regression estimates between predicted and 
observed values with confidence intervals are shown with blue coloured lines while 1:1 lines are drawn with magenta. R2, RMSE and nRMSE values are given, though 
note that RMSE and nRMSE values are the same for C1–C4 since their range is 0–1. Regression slopes are consistently <1, indicating that not all variance in responses 
is accounted for in the models. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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significantly between PFTs, study areas and used remote sensing 
explanatory variables. In one study, R2 values for AGB ranged from 28% 
for lichens to 78% for deciduous shrubs (Orndahl et al., 2022). In be-
tween are estimates in the range 33–75% (Räsänen et al., 2019a), 
36–70% (Räsänen et al., 2021b), 43–62% (Pang et al., 2022) and 
50–67% (Räsänen et al., 2020b). LAI modelling performance has been 
similar but it has been assessed in fewer studies (Pang et al., 2022; 
Räsänen et al., 2020b). Results for AGB and LAI estimation when not 
tied to PFTs are similarly varied, with values ranging 0.60–0.90% in 
heath-fen tundra mosaics (Villoslada et al., 2023) and 0.31–0.65 in 
tussock tundra (Bratsch et al., 2017). Based on the large ranges for AGB 
and LAI prediction accuracy in previous studies, we assume that our 
models perform more accurately in some sub-areas and for some PFTs 
than others, depending on the vegetation and abiotic factors. 

We found that MSI data were the most important for estimating AGB 
and LAI, though in both, HSI variables were also selected for the final 
models but topographic variables were not selected for LAI. Indeed, 
traditional greenness measures (red-green index, simple ratio, NDVI) 
were the most important predictors (Table 6). Recent studies indicate 
that accurate canopy height models could further improve these results 
(Cunliffe et al., 2020; Orndahl et al., 2022; Villoslada et al., 2023). 
Cunliffe et al. (2020), in particular, achieved remarkably high R2 values 
of 90% and 92% for estimating aboveground vascular biomass with 
CHMs, in stark contrast to 14–23% predictions with NDVI. However, 
their tundra site is dominated by tall Salix shrubs and bushes and thus 
we would not expect results to directly replicate to lower-vegetation 
landscapes. In a later study, Cunliffe et al. (2022) applied a similar 
methodology to a range of sites with median R2 of 87%. Orndahl et al. 
(2022), on the other hand, achieved RMSEs of 3.3–10.5 cm for plant 
height estimation using structure-from-motion (SfM) point clouds. In 
their study, the ground sampling distance (GSD) for images is < 1 cm. 
Noting that the vegetation in our study site is typically lower (mean 
dominant height ca. 6 cm) than the upper range of this error, and that 
our GSD was higher (7 cm at the lowest), we were unable to produce a 
CHM suitable for inclusion in our models (SI 11). Future research could 
look to develop improved methods for estimating canopy height in areas 
with very low vegetation. 

The limited benefits of HSI data in estimating AGB and LAI that we 
found echoed results from Arctic peatlands (Pang et al., 2022; Räsänen 

et al., 2020b) and boreal forests (Halme et al., 2019). Pang et al. (2022) 
explored optimal spectral resampling of HSI data and found 10–20 nm to 
be generally most accurate for detecting peatland vegetation patterns, a 
bandwidth closer to those of the MSI sensors than the HSI sensor in our 
study. Räsänen et al. (2020b) used a HSI approach with 28 bands in the 
500–900 nm range and concluded that HSI provide limited benefits. In 
boreal forests, Halme et al. (2019) found that high-resolution (GSD 0.7 
m) HSI data performed equally (62%:63%) to lower-resolution (GSD 10 
m) MSI in estimating AGB while outperfoming MSI in LAI estimation 
(83%:75%). The authors also argued that the increased spectral reso-
lution is more important in improving LAI estimation than increased 
spatial resolution. 

In our study, AGB and LAI were determined by regression models and 
were based on dominant height measurements and visual %-cover es-
timates. The subjectivity of visual estimation may increase uncertainty 
in estimating AGB and LAI but general biases are unlikely due to ob-
servations being made by multiple people. Regression models also 
underrepresent variance in AGB and LAI, and correspond to true values 
better in some PFTs than others (Table 1; Räsänen et al., 2019a). While 
this methodology also accounts for high correlations between AGB and 
LAI (Table 9, Fig. S.23), it is unlikely to notably change the predictive 
accuracy of models, though nRMSE were probably artificially low since 
the variance in the metric is smaller than the “real” variance (Räsänen 
et al., 2019a). 

4.2. Biodiversity metrics 

S and H were both best estimated by multitemporal MSI dataset 
MMT. That is, the best results were achieved with a dataset other than 
All, indicating that variable selection was unable to perform optimally 
with the All dataset. This may imply that repeating VSURF for variable 
selection leads to redundancy in explanatory variables and reduced 
modelling performance in some cases, as the number of selected vari-
ables for S from MMT was only 5 whereas 16 were selected for All, and 
the former obtained better results. The large number of selected vari-
ables highlights the difficulty to estimate biodiversity based on plot- 
level reflectance mean and variance, and spectral indices, and the 
relative interchangeability of many HSI indices. 

HSI could hypothetically add potential to estimate biodiversity, since 
it can capture more subtle variations in the reflectance spectra than MSI 
(Carlson et al., 2007; Fassnacht et al., 2022; McPartland et al., 2019), 
and tundra can exhibit greater spectral diversity than MSI can capture 
(Nelson et al., 2022). This both does and does not bear out in our study. 
On the one hand, HSI variables are prevalent (8/16 and 8/12 for S and 
H, respectively) in selected variables from dataset All for biodiversity 
models. On the other hand, as noted above, the best-performing models 
for both metrics exclude HSI data. This finding is similar to the obser-
vation by Räsänen et al. (2020b) that even though hyperspectral data 
can be important according to feature selection they do not markedly 
improve model performance. 

However, our results did indicate that HSI reduced the importance of 
topographic information in biodiversity estimation. While topographic 
information was essential for biodiversity metrics with MSI datasets (R2 

increase by ≥ 10 pp), benefits from topography were much more limited 
for HSI data (3 pp. in both cases). Thus, HSI did improve biodiversity 
estimation, but only when topographic information was unavailable. 
The relationship between topography and diversity is closely related to 
community composition, as some communities are more diverse than 
others (Table 4; Nelson et al., 2022; Oksanen and Virtanen, 1995; 
Pääkkö et al., 2018). 

In addition to reflectance and first derivatives, our datasets included 
plot-level variances in reflectance as a measure of spectral variability, 
following the spectral variability hypothesis (McPartland et al., 2019; 
Palmer et al., 2002; Wang and Gamon, 2019). The best-performing 
dataset (MMT) did not utilize spectral variance variables for S, but for 
H, it does (Table S.13)(Table S.13), but for H, the best-performing model 

Table 7 
Confusion matrix for random forest classification with dataset All. Presented 
numbers are averages over 100 random forest runs, and thus not whole numbers.    

Predicted    

1 2 3 4 Producer’s 
accuracy 

Observed 1 15.23 5.78 10.87 6.12 0.40 
2 4.95 16.93 5 5.12 0.53 
3 4.93 1.00 63.99 5.08 0.85 
4 6.81 5.11 4.45 36.63 0.69 
User’s 
accuracy 

0.48 0.59 0.76 0.69 OA = 0.67  

Table 8 
Fuzzy confusion matrix for classification with dataset All. Presented numbers are 
averages over 100 random forest runs.    

Predicted    

1 2 3 4 Producer’s 
accuracy 

Observed 1 11.49 7.17 10.86 8.48 0.3 
6.12 12.27 5.26 8.36 0.38  
11.32 6 48.45 9.22 0.65  
7.68 8.42 8.71 28.18 0.53  
User’s 
accuracy 

0.31 0.36 0.66 0.52 fOA = 0.51  
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(NMMT) does (Table S.14), though these spectral variance variables are 
of relatively low importance, losing to topographic and reflectance 
variables. In HSI models (Table S.14–S.15), only one spectral variance 
variable (at 935 nm in the NIR region) was selected for S, and none for H. 
As such, these results provide very limited support for the spectral 
variability hypothesis at an ultra-high spatial resolution in oroarctic 
tundra. In a similar vein, Fassnacht et al. (2022) have concluded that 
spectral variability is often subtle relative to other observable differ-
ences between taxa and the relationship between spectral and species 

diversity in general is unclear. However, future studies could look at the 
spectral diversity hypothesis in tundra landscapes across various spatial 
scales. 

4.3. Fuzzy community clusters 

4.3.1. Cluster membership regression 
Model performance for fuzzy community cluster regression was 

mixed (R2 0.29–0.53) and, particularly for the lowest-R2 cluster 1, quite 

Fig. 7. Prediction maps for examined plant community metrics: aboveground biomass, leaf area index, species richness, Shannon’s index and community cluster 1–4 
membership values. Pictured also a general overview, UAV RGB orthomosaic (Jul 21, 2022), and two discrete clusterisations of the imaged area, the first based on 
cluster membership regressions and the second on random forest classification. Classifier votes are mapped in the last row. 
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poor. At the same time, cluster membership values for clusters 1 and 2 
were the only metrics where HSI data improved results >5 pp. (10 pp. in 
C1 and 6 pp. when fused with MSI in dataset All for C2). Previous studies 
in treeless landscapes have found similarly large discrepancies in the 
modelling of different plant communities, with estimation accuracy 
ranging 0.16–0.82 in northern peatlands (Pang et al., 2022; Räsänen 
et al., 2019b, 2020a), 0.26–0.79 in sub-alpine peatlands (Feilhauer 
et al., 2021), and 0.25–0.69 in a temperate wetland (Rapinel et al., 
2018). Our results fell within the lower ranges of these previous studies, 
but particularly good predictions were absent and most cluster mem-
bership R2 values were under 0.5, with the exception of C3 at 0.53. 
Including topographic information consistently improved community 
cluster estimation by 2–35 pp., which corresponds to the previous 
determination of topography as key to community composition in tun-
dra landscapes (Oksanen and Virtanen, 1995). As with biodiversity 
metrics, this improvement was smaller for HSI than for MSI. Higher 
spatial resolution data outperformed the lowest-resolution NLS dataset. 

In part, this may be explained by spectral properties, but sensor details 
for these images are unavailable. Finally, in the case of C1 and C2, 
single-year MSI datasets M20T or M22T outperformed multitemporal 
MSI dataset MMT, of which every variable in M22T and M20T is part by 
3 pp., showing again that variable selection can notably change model 
performance. 

Differentiation between plant community clusters must also be 
examined in terms of the community clusters themselves. The most 
poorly predicted C1 is also the most broadly defined when examined in 
the ordination space (Fig. S.1) and represents the wettest conditions. 
Conditions in the spatially limited moist areas (streambeds) in the study 
site differ from the dominant dry shrub heaths, but also among them-
selves. As a result, our data may not comprehensively represent these 
distinct areas within the study site and better prediction results might be 
obtained with a clustering based on a dataset with better representation 
of moist conditions. Furthermore, the strongest indicator species for C1 
was V. uliginosum, a close relative of V. myrtillus, an indicator for C2, 

Table 9 
Correlation matrix for plant community characteristics: aboveground biomass, leaf area index, species richness, Shannon’s index and community cluster 1–4 mem-
berships and random forest classification vote shares. The lower left triangle contains Pearson correlation coefficients for metric values at field plots, while upper-right- 
triangle values are calculated across prediction maps. V1–V4 signify relative vote shares from random forest classifier.    

Across predictions   

AGB LAI S H C1 C2 C3 C4 V1 V2 V3 V4 

Across observations AGB  0.91 0.46 0.38 0.25 0.33 − 0.54 0.32 0.14 0.16 − 0.38 0.27 
LAI 0.87  0.42 0.39 0.32 0.30 − 0.46 0.27 0.19 0.14 − 0.28 0.13 
S 0.17 0.24  0.66 0.26 0.55 − 0.66 0.22 0.26 0.54 − 0.59 0.25 
H 0.00 0.16 0.77  0.28 0.61 − 0.65 0.20 0.21 0.49 − 0.51 0.20 
C1 0.07 0.17 0.27 0.23  0.30 − 0.24 − 0.06 0.39 0.12 − 0.13 − 0.15 
C2 0.08 0.10 0.48 0.57 0.02  − 0.63 0.21 0.30 0.48 − 0.50 0.14 
C3 − 0.25 − 0.27 − 0.61 − 0.56 − 0.45 − 0.61  − 0.49 − 0.28 − 0.40 0.72 − 0.45 
C4 0.33 0.22 0.32 0.20 − 0.19 0.13 − 0.60  − 0.22 0.09 0.53 0.69 
V1 0.03 0.19 0.23 0.17 0.40 0.00 − 0.19 − 0.10  0.02 − 0.27 − 0.26 
V2 0.10 0.14 0.47 0.45 0.13 0.51 − 0.40 0.03 0.02  − 0.59 − 0.03 
V3 − 0.32 − 0.32 − 0.56 − 0.48 − 0.19 − 0.48 0.67 − 0.43 − 0.27 − 0.59  − 0.72 
V4 0.32 0.18 0.22 0.17 − 0.10 0.23 − 0.43 0.58 − 0.26 − 0.03 − 0.66   

Fig. 8. Maps of productivity and biodiversity metrics produced by datasets M22T and HST; that is, by MSI and topographic data on the top row and by HSI and 
topographic data on the bottom. 
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which may have caused confusion between the two spectrally similar 
clusters (Lang et al., 2002). In general, however, we found that HSI 
improved prediction in moist areas (C1 and C2), and elsewhere, HSI has 
been found to be sensitive to moisture (Rehman et al., 2020). The in-
clusion of short-wave infrared (SWIR) data for better moisture analysis 
could improve these results (Kim et al., 2015; McPartland et al., 2019), 
though none of the available moisture indices, whether spectral or 
topographic, was chosen as predictors for the moist clusters in our study. 

4.3.2. Cluster classification 
Differences between classification models were relatively small (OA 

0.46–0.67 and fOA 0.39–0.53). Topographic data alone performed 
better than most spectral-only datasets, with the exception of M20. 
Maximum OA was only 0.08 greater than topography-only OA, and fOA 
only 0.04 greater. There was no clear difference in performance between 
MSI and HSI datasets. Confusion matrices (Tables 7–8, SI 10) show that 
cluster 3 was predicted with notably higher accuracy than the others, 
and for cluster 1 both producer’s and user’s accuracies were below 0.5 
(with dataset All). 

In previous research, a common approach has been to classify tundra 
vegetation by dominant species: Kupková et al. (2023) classified alpine 
grassland tundra with accuracies of 48–100% with a similar data-fusion 
multispectral and hyperspectral approach as ours; Thomson et al. (2021) 
classified High Arctic species at 47–88% with HSI; Yang et al. (2020) 
classified dominant species at 46–100% in a mainly shrubby tundra 
setting using RGB and thermal images, and UAV-born spectrometer 
measurements. Our accuracies of 40–85% were slightly lower, and we 
did not classify by dominant species but unsupervised floristically 
defined clusters of co-occurent species. 

4.4. Hyperspectral data 

In principle, HSI data should contain all the same and more infor-
mation as MSI data, particularly since the GSD was similar in our case. In 
a review on UAV-platform remote sensing, Nex et al. (2022) found that 
HSI usually outperforms MSI in complex analysis, e.g. tree species 
classification, and the two perform similarly when the bands that are 
used coincide. Why, then, did our HSI models not regularly outperform 
MSI ones? 

One possibility is that narrowband (hyperspectral) vegetation and 
soil indices as employed here are not able to capture the same properties 
as the broadband indices. For example, when NDVI is calculated for HSI, 
this index uses single narrow HSI red and NIR bands, while MSI NDVI 
uses broad red and NIR bands that cover larger parts of the reflectance 
spectra. However, resampling HSI data to match MSI data did not 
improve performance, and both models that used spectrally resampled 
HSI, with and without topographic data (HM and HMT), were less ac-
curate than those with original spectral resolution (HS and HST) for all 
metrics. HM and HMT models were also less accurate than single-year 
MSI models for all metrics except C2, where HM outperformed both 
M20 and M22, S, where HM outperformed M22, and C1, where HMT 
outperformed M22T. Indeed, spectral resampling may have resulted in 
increased noise relative to MSI while reducing informating relative to 
HSI. In the case where the spectrally resampled HM model outperformed 
single-year MSI models M20 and M22 (metric C2), this result was not 
repeated when topographic data was included (i.e., HMT and M22T). In 
spectral resampling, we assumed a Gaussian response, and while uti-
lising a calibrated spectral response curve might have improved results, 
any improvements would likely have been small, since the difference in 
response curves is likely small (Cao et al., 2020). 

Other explanations for poor HSI performance may be found in data 
acquisition or processing. Data processing for HSI is more complex than 
for MSI due to the large number of bands, pushbroom imaging tech-
nology and radiometric corrections that have to be made to obtain 
reflectance values (Nex et al., 2022). This means that HSI is more prone 
to error or processing-introduced noise, as well as being spatially less 

robust than MSI. Thus, benefitting from the properties of HSI relative to 
MSI may require optimising imaging conditions and processing pipe-
lines. In some studies, HSI data representation is customised based on 
the acquired data and dimensionality is reduced based on, for example, 
minimum noise fractions (Hall and Lara, 2022; Kupková et al., 2023; 
Luo et al., 2016). Conversely, dimensionality could be further increased 
by computing, for example, normalised difference indices between all 
pairwise combinations 

( n
2
)

of bands, which would add >6000 variables 
with our HSI. Here, in contrast, we combined bands only based on a 
priori spectral index definitions and to coincide with our MSI sensor, and 
in principle, a key benefit to random forests and other machine learning 
algorithms should be their ability to extract relevant information from 
complex data. While Hall and Lara (2022) produced encouraging results 
from dimension-reduced HSI, these were not reproduced by Kupková 
et al. (2023) who obtained approximately similar results for both UAV 
MSI and HSI. 

Finally, hyperspectral data may better serve mapping tasks that de-
mand a high-spectral-resolution analysis, for example estimating spe-
cific pigment content or other biochemical properties that have 
explicitly spectral characteristics. For example, Liu et al. (2023) recently 
estimated foliar photosynthetic capacity and other biochemical traits 
from HSI with reasonable to good results (R2 0.38–0.6), while Peanu-
saha et al. (2024) estimated leaf nitrogen content with spectrometer- 
derived VIs with R2 0–0.48. However, Lu et al. (2019) found only very 
slight benefits from hyperspectral data in estimating leaf chlorophyll 
content relative to VNIR MSI (R2 0.80 vs 0.81). In Arctic contexts, 
biochemical traits have rarely been explicitly examined, in part due to 
logistical constraints (Beamish et al., 2020). Weighing these and our 
results, it is not obvious that HSI would perform better if response 
metrics were more strictly spectrally defined, but the possibility merits 
future research. 

5. Conclusions 

We conducted a unique and broad investigation on the relative 
utility of close-range hyperspectral and multispectral imaging as well as 
topographic data for mapping of natural plant communities in oroartic 
tundra. We showed that random forests built on close-range MSI, HSI 
and topographic remote sensing data estimate tundra plant community 
properties – AGB, LAI, species richness, Shannon’s entropy, fuzzy 
community clusters – with moderate accuracy (R2 0.29–0.65). Espe-
cially, AGB (0.60) and LAI (0.65) were well-estimated with multispec-
tral datasets and traditional greenness measures. Biodiversity metrics 
were best estimated with multitemporal multispectral and topographic 
data (species richness 0.53 and Shannon’s entropy 0.46). Modelling 
plant communities was more convoluted and some community clusters 
were more accurately predicted than others (R2 0.29–0.53, classification 
OA 0.67). In this case, E. nigrum ssp. hermaphroditum (C3, 0.53) or 
C. vulgaris (C4, 0.45) dominated communities were modelled with the 
highest accuracy. These evergreen shrubs were both abundant and 
dominant in their respective communities, in addition to which they 
were found in dry areas, both factors that may have influenced esti-
mation accuracy. Our model performance results question the utility of 
HSI data for these applications and assert that MSI and topographic data 
are often sufficient in practical applications. While HSI variables gained 
high importance in variable selection, this did not translate into better 
performance in most models that included topographic data. The ex-
ceptions were the more moist community clusters 1 and 2, which got 
limited (up to 10 pp) boosts from HSI data, but were also the most poorly 
estimated metrics. Nevertheless, when comparing models with pre-
dictors calculated only from spectral and not from topographic data, HSI 
typically outperformed MSI. Generally, more refined approaches in 
processing and representing spectral data, as well as variable selection, 
may lead to stronger predictions and greater advantages from HSI. 
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Rimali, A., Virtanen, T., 2020b. Peatland leaf-area index and biomass estimation 
with ultra-high resolution remote sensing. GISci. Remote Sens. 57, 943–964. https:// 
doi.org/10.1080/15481603.2020.1829377. 

Räsänen, A., Manninen, T., Korkiakoski, M., Lohila, A., Virtanen, T., 2021a. Predicting 
catchment-scale methane fluxes with multi-source remote sensing. Landsc. Ecol. 36, 
1177–1195. https://doi.org/10.1007/s10980-021-01194-x. 

Räsänen, A., Wagner, J., Hugelius, G., Virtanen, T., 2021b. Aboveground biomass 
patterns across treeless northern landscapes. Int. J. Remote Sens. 42, 4536–4561. 
https://doi.org/10.1080/01431161.2021.1897187. 

Rehman, T.U., Ma, D., Wang, L., Zhang, L., Jin, J., 2020. Predictive spectral analysis 
using an end-to-end deep model from hyperspectral images for high-throughput 
plant phenotyping. Comput. Electron. Agric. 177, 105713. URL: https://www. 
sciencedirect.com/science/article/pii/S0168169920315908 https 
://doi.org/10.1016/j.compag.2020.105713. 

Reichle, L.M., Epstein, H.E., Bhatt, U.S., Raynolds, M.K., Walker, D.A., 2018. Spatial 
heterogeneity of the temporal dynamics of Arctic tundra vegetation. Geophys. Res. 
Lett. 45, 9206–9215. https://doi.org/10.1029/2018GL078820. 

Rocchini, D., Balkenhol, N., Carter, G.A., Foody, G.M., Gillespie, T.W., He, K.S., Kark, S., 
Levin, N., Lucas, K., Luoto, M., Nagendra, H., Oldeland, J., Ricotta, C., 
Southworth, J., Neteler, M., 2010. Remotely sensed spectral heterogeneity as a proxy 
of species diversity: recent advances and open challenges. Eco. Inform. 5, 318–329. 
URL: https://www.sciencedirect. 
com/science/article/pii/S1574954110000646 https://doi.org/10.1016/j. 
ecoinf.2010.06.001. 

Shannon, C.E., 1948. A mathematical theory of communication. Bell Syst. Tech. J. 27, 
379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x. 

Steenvoorden, J., Bartholomeus, H., Limpens, J., 2023. Less is more: optimizing 
vegetation mapping in peatlands using unmanned aerial vehicles (UAVs). Int. J. 
Appl. Earth Obs. Geoinf. 117, 103220. URL: https://www.sciencedirect. 
com/science/article/pii/S1569843223000420 https://doi.org/10.1016/j. 
jag.2023.103220. 

Sundqvist, M.K., Sanders, N.J., Dorrepaal, E., Lindén, E., Metcalfe, D.B., Newman, G.S., 
Olofsson, J., Wardle, D.A., Classen, A.T., 2020. Responses of tundra plant community 

carbon flux to experimental warming, dominant species removal and elevation. 
Funct. Ecol. 34, 1497–1506. https://doi.org/10.1111/1365-2435.13567. 

Thomson, E.R., Spiegel, M.P., Althuizen, I.H.J., Bass, P., Chen, S., Chmurzynski, A., 
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